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INTRODUCTION 

The theory of controllability and observability has been 

developed, one might almost say reluctantly, in response to problems 

generated br technological science, especially in areas related to 

control, comunication, and camputers. It seems that the first 

conscious steps to formalize these matters as a separate area of 

(system-theoretic or mathematical) research were undertaken only as 

late as 1959, by KALMAN bg60b-c] . There have been, however, m q l  

scattered results before this time (see Sectiori 12 for some historical 

comments and references), and one might confidently assert today thzt 

saw of the main results have bee3 discovered, more or less independ- 

ently, in every country which has reached an advanced stage of 

ndevelopmentlv and it is certain that these same results w i l l  be 

rediscovered again in still more places as other countries progress 

on the road to development. 

With the perspective afforded by ten years of happenings in 

this field, we ought not hesitate to make some guesses of the signi- 

ficance of what has been accomplished. I see kwo main trends: 

(i) The use of the concepts of controlla5ility and observability 

to study nonclassical questions in optimal control and optimal estima- 

tion theory, sometimes as basic hypotheses securing existence, more 

often as seemingly technical conl'Ltions which allow'a sharper statement 

of results or shorter proofs. 

(ii) Interaction between the concepts of controllability and 

observability and the study of structure of dynamical systems, such 
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as: formulation and solution of the problem of realization, 

canonicu forms, decomposition of systems. 

The f i r s t  of these topics i s  older and has been studied 

primarily from the point of view of analysis, although the basic 

lemma (2.7 ) i s  purely algebraic. The second group of topics 

may be viewed as "blowing up" the ideas inherent in the basic 

lemma (2.7 ), resul t ing i n  a more and more s t r i c t l y  algebraic poixt 

of view. 

There i s  active research i n  both areas. 

I n  the f i r s t ,  attention has shifted from the case of systems 

governed by finite-dimensional l inear  d i f fe rent ia l  equations with 

constant coefficients (where success was quick and to ta l )  t o  systems 

governed by infinite-dimensional l inear  different ial  equztions (delay 

different ial  equations, c lassical  types of pa r t i a l  different iel  

equations, etc.), t o  finite-dimensioml l inear  d i f fe rent ia l  equa- 

t ions with time-dependent coefficients, and f ina l ly  t o  a l l  sor ts  

and subsorts of nonlinear different ial  equaticns. The f i r s t  two 

topics are  surveyed concurrently by WEISS i19691 while blAEWS [ 1955 1 

looks at the nonlinear situation. 

own current interest  l i e s  i n  the second s trem, and these 

lectures w i l l  deal primarily with it, a f t e r  a rather hurried over- 

iriew of the general problem and of the llclassicalll results.  

Let us take a quick look at the most imprtant  of these "classicalf1 

results. For convenience I shal l  describe them i n  system-theoretic 



(rather than conventional pure mathematical! language. The mathe- 

matically trained reader should have no difficulty in converting 

them into his preferred framework, by digging a little into the 

references . 
In area (i), the mort important results are probably those 

which give more or less explicit and computable results for control- 

lability and observability of certain specific classes of systems. 

Beyond these, there seen to be two main theorems: 

THEOREM. A. A real, continuous-time, n-dimensional, constant, 

linear dynamical system C has the property "every set of n 

eigenvalues may be produced by suitable state feedback" if and 

only if & is completely controllable. 

The central special case is treated in great detail by KALMCLN, 

FAZIB, and ARBIB [ 1969, Chapter 2, Theorem 5-10] ; for a proof cf the 

general case with background coments, refer to WONHAM [1967 1. As 

a particular case, we have that eveq system satisf'ying the hypotheses 

of the theoren can be 'lstabilized" (made to have eigenvalues with 

negative real parts) via a suitable choice of feedback. This result 

is the "existence theorem" for a1gori.h~ used to construct control 

systems for the past three decades, znd yet a conscious formulation 

of the problem and its mathematical so:-:tion go back t:, about 1963! 

(see Tlieorem D below.') The analogous problem for nonconstant linear 

systems (g0verned.b~ linear differential equations with variable 

coefficients) is still not solved. 
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THEOREM B.  duality Principle1') Every problem of control- 

lability in a real, (continuous-time, or discrete-time), finite- 

dimensional, constant, linear dynamical system is equivalent to 

a controllability problem in a dual system. 

This fact was first observed by KALMAN [ lg60aI in the solution 

of the o~timal stochastic filtering problem for discrete-time 

systems, and was soon applied to several problems in system theory by 

KAIMAN [1960b-c 1. See also many related comments by KMWN, FALB, 

and &BIB [chapters 2 and 6, 19691. As a theorem, this principle 

is not yet known to be valid outside the linear area, but as an 

intuitive prescription it has been rather iwefKL In guiding system- 

theoretic research. Ti-e problems involved here are those of fomula- 

tion rather than proof. The basic difficulties seem to point toward 

algebra and in particular category theory. System-theoretic 

duality, like the categoric one, is concerned with "reversing 

arrowsv. See Section 10 for a modern discussion of these poin%s 

and a precise version of Theorem B. 

Partly as a result of the questions raised by Theorem B and 

partly because of the algebraic techniques needed to prove Theorem 

A and related lemmas, attention in the early 19601s shifted toward 

certain problems of a structural nature which were, somewhat sur- 

prisingly at first, found to be related to controllability and 

observability. The main theorems again seem to be two: 

THEOFEM C . (canonical ~ecomgos i.tj.on) Every real ( coct inuous- 

time or discrete-time), finite-dimensional, consf?r.t, linear dynamical 
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system may be canonically decomposed into four parts, of which only 

one part, that  which i s  completely controllable and completely observ- 

able, i s  involved i n  the input/output behavior of the system. 

The proof given by m4AN [ 19621 applies t o  nonconstafit systems 

only under the severe restr ic t ion that  the dimensions of the sub- 

space of all controllable and a l l  unobservable s ta tes  i s  constant 

on the whole r e a l  l ine.  The resul t  represented by Theorem C i s  f a r  from 

definitive, however, since f inite-dimensiorlal linear, rcnconsta~t  systems 

Mt at leas t  four d i f f e r e x  canonical dec~mpositi~ng: it i s  

possible and f r u i t f u l  t o  dualize the notions of controllabili ty 

and observability, thereby arriving a t  four properties, presently 

called 

reachability and controllabili ty 

as well as 

const-ructibil i tp and observability. 

(see Section 2 definitions.) Any combimtion of a property from 

the f i r s t  l i s t  with a property from the second l i s t  gives a canoni- 

ca l  decomposition resul t  ans.logms t o  Theorem C. The complexity of 

the situation was f i r s t  revealed by \TEISS ?ad U L N  [1955]; t h i s  

paper contributed t o  a revival of interest  (with hopes of success) 

@ the special problems of nonconstant.linear systems. Recent 

*.EISS [1969] uses "detenlinabilitytt instead of constructi- 
b i l i ty .  The new terminology used i n  these lectures i s  not yet 
entirely standard. 
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progress is surveyed by WEISS [~9691. Intimately related to the 

canonical structure theorem, and in fact necessary to f'ully clarify 

the phrase "involved in the input/output behavior of the system': is 

the last basic result: 

THEOREM D, (uniqueness of I-finiml ~ealization) Given the 

impulse-response matrix W of a real, continuous-time, finite- 

dimensional, linear dynamical system, there exists a res1,'continuous- 

time, finite-dimensional, linear dyndcal system % which 
. (a) realizes W: that is, the impulse-respogse matrix of 

5 is equal to W; 
(b) has minim1 dim~nsion in the class of linear systems 

satisfying (a) ; 

(c) is completely controllable and completely observable; 

(d) is uniquely determined (modulo the choice of a basis 

at each t for its state space) by requirement (8) 

together with (b) or, independently, by (a) together with 

( c )  . 
In short, for any W as described $hove, there is an llessentially 

1 of the same "type" rrhich satisfies (a) through (c). - 
COROLLARY 1. If W comes from a constant ~ystem, there is a 

constant 3 which satisfies (a) through (c), - and is uniquelz 

determined by (a) .t (b) or (a) + (c) (modulo a fixed choice of - - 
basis for its state space). 
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COROLIA3Y 2. A11 claims of Corollary 1 continue tr, hcld if 

"impulse-response niatrix of a constznt, finite-dimensional system" 

is replaced by "transfer function matrix of a consta~t, finite- 

dimensional system". 

The first general discussion of the situation with an equiva- 

lent statement of Theorem D is due to -UT [1963b, Theorems 7 

and 81. (!Chis paper: does not include coaplete proofs, or even 

an explicit statement of Corollaries 1 zzd 2, althougl; they are 

implied by the general algorithn given in Section 7. An edited 

version of the original unpublished proof of Tqeorem D is given 

in KfUNlN, FALB, and ARBIB [ 1969, Chapter 10, Appendix C 1. ) 

These results are of great importance in .ecgineering system 

theory since they relate methods based on t'ne &place transform 

(using the transfer function of the systen) asd the time-damin 

methods based on input/output data (the netrix bl) to the state- 

varizblr (dynami cal system) methods developed in 1955-1960. In 

fact, by Corollary 1 it follows that the t~:o msthods ~mst yield 

identical results; for instance, starting with a constznt impulse- 

response matrix W, property (c) implies that; the existence 

of a stable control lay is always assured by virtue of Theorem A. 

~hus it is only after the development represented by Theorems A-D 

that a rigorous justification is obtained. for tke intuitive design 

methods used in control engineering. 

As with   he or em C, certain formulationel difficulties arise 

in connection with a precise definitio~ of a "r,onconstant linear 
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dynamical system". Thus, it geems preferable at present to replace 

in Theorm D vimpulse-response matrix W" by "weighting pattern W" 

(or ttabstract input/output map W") and "complet? controllabilityw 

by "complete reachability". The definitive form of the 1963 theorem 

evolved through the works of WEISS and KAW4.N [1965 1, YCUA [~966], 

and KADZAN; a precis2 :ormulation and modernized proof of Theorem D 

in the weighting pattern case was given recently by K U M N ,  FALB, 

and ARBIB [ 1969, Chapter 10, SecC,ion 13.1 A completely gerieral 

discussion of what is meant by a 'Iminimal realization" of a non- 

constant impulse-response matrix involver many technical coaplica- 

tions due to the fact tLzt such a minimal reelization does not 

exist in the class of linear differential equatiolls with Itnice" 

coefficie~lt f'unctions. Fov the current status of thSs probleia, 

consult especially DESOER and VARAIYA E19671, SILVFXMAY a-d MEADOWS 

C1.9691, KA.IMAN, FFALB, and ARBIB C1969, Chapter 10, Section 131 anrl 

WEISS [1969]. 

From the standpoint of the present idtures, by far -tihe most 

interesting consequence of Theorem D is its influence, via efforts 

to arrive at a definitive proof of Corollary 1, on the developmezlt 

of the algebraic stream of system theory. The first proof of this 

important result (in the special case of .distinct eigenvalues) is 

.that of GILBERT [1963 1. Immediately afterwards, a general proof 

was given by W [1963b, Sectior, 71. !!?cis proof, strictly 

co~putational and.linear algebraic in nature, yields no theoreti- 
% 

cal insight although it is u s e m  as t-he basis of a computer algorithm. 
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Using the classical theory of invariant factors, W.'U [ 196ja] 

succeeded in shwiag +&t t'le solution of the mi- realization 

problem can be effectively reduced t o  the classical Invariant- 

factor algorithm. This result is of grezt theoretical interest 

since it sGon&v suggests the m w  stzndard M u l e  theorctic 

approach, b ~ t  it does not lead t o  a slmple proof of CoroUary 1 

and 5s not a practical ~iS'aod of cmputation. 

The best known proof of Corollzsy 1 was obtained i n  1965 by 

B. L. lk, with the aJd of z rermzzhble -orit&, which is equduy 'Ioportant 

from a theoreticzl a3ld caqcitationa3 vieh~ctjnt. The early famuB~- 

tion of the algorithro uzs &scribed by 30 a& KAL?-5!!-1Z [2966], with 

b3er  refinements discussed i n  HO an6 KAELfiX [~96g], KAIXMI, FALB, 

and ARLE [1$g, Cmpter 12, Section U] znd E [ P X . ~  tl96)cl. 

A3acst s5xmiltaneously with the wrk of B. L. Ho, t5e basic results 

were discovered Znd~pende~tQ- also by Y O U i 4  m d  YISSI [1g66l m d  

by- SILI'E&YUT [ 19661 . The scb ject goes k c k  to  the 1 s h  cen%my 

and centers around .tine t-heoqr of Hvrkel mat rice^; 'aawevsr, my 

of the results just referenced seem to  bs ~ ~ e n + , a U y  new. This 

field i s  currefitly i n  a very wtive stage or" dcvelopent . Ve skzI-2 

discuss the essentizl ideas invoived in Sectims 8-3. F !  other 

topics, especially S i l v e r n t  s geaerclization of tbe algorithm t o  

noncocstm% system uricrtunately c m m t  2 colered due t o  l . x k  or" 

t h .  
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i. CLASSICAL ANI MODERN DYW'CAL SYSTEW 

In  mathematics the term dynamical system (synonyms: topological 

dynamics, flows, abstract dynamics, etc.) usually connotes the action 

of a one-parameter group T (t5e reals) on a se t  X, where X i s  

at leas t  a topological space (more often, a differentiable &fold) 

and the action i s  at leas t  continuous. This setup i s  physically 

motivated, but i n  a very old-fashioned sense. A l'dynamical system" 

as just  defined i s  an idealization, generalization, and abstraction 

of Newton's world view of the Solar System as described v i a  a f i n i t e  set  of 

nonlinear o r d i ~ a r y  different ial  equations. These equations represent 

the positions and momenta o f t h e  planets regarded as point masses and 

are  completely deternined by the laws of gravitation, i.e., they do 

not contain any terms t o  account for  "external" forces that  may ac t  

on the system. 

Interesting as t h i s  notation of a dynamical system may be (and 

i s l )  i n  pure mathematics, it i s  much too limited for  the study of 

thc;e dynamical systems which are of contemporary interest .  There 

a re  a t  lezs t  three different ways i n  which the classical  concept 

must be generalized: 

( i )  The time se t  of the system i s  not r,ecesaarily restr ic ted 

t o  the reals; 

- ( i i )  A s ta te  x E X of %h2 sy~tem i s  not merely acted upon by 

the "passage of time" but also by inputs which are  or could be mani- 

pulated t o  bring about a desired type of behavior; 
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( i i i )  The s tates  of the system cannot, i n  general, be observed. 

Rather, the physical behavior of the system i s  manifested through 

i t s  outputs rhich are many-to-one f'unctions of the state.  

The generalization of the time set  i s  of minor interest  t o  us 

here. Tht sotions of input and output, however, a re  exceedingly 

fundamental; i n  fact, control labi l i ty  i s  related t o  the input and 

observability t o  the output. With respect t o  dynamical systems i n  

the classical  sense, neither controllabili ty nor observability are  

meaningful concepts. 

A much more detailed discussion of dynamical systems i n  the modern 

sense, together with rather detailed precise definitions, w i l l  be 

found i n  KAINAN, FALB, and ARBIB [1969, Chpter  11. 

From here on, we w i l l  use the term "dynamical system" exclusively 

i n  the modern sense (we have already done so i n  the ~ntroduction).  

The f o l l o w i r ~  symbols w i l l  have a fixed mea-xing throughout the 

paper : 

T = time set, 

U = se t  of input. values, 

X = s t a t e  set, 

(1- 1) Y = se t  of output values, 

R = input functj-ons, 

9 = t ransi t ion map, 

q = readout map. 

The following assumptions w i l l  always jpply (otherwise the se ts  

above are  arbitrary) : 
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T = an ordered subset of the reals  R, - 
R = class of flrnctions T -, U such that  

( i )  each function w is  undefined outside some 

(1.2) f i n i t e  interval J o C T  dependent on w; 

( i i )  if Jw n Jot = there i s  a function 

o E Q which agrees with w on Jo and 

with wt on J,,. 

For mosl-, _c-.->ses la ter ,  T w i l l  be equal t o  Z. = (ordered) - 
abelian group of integers; U, X, Y, Q w i l l  be l inear spaces; "unde- 

fined" can be replaced by "equal t o  0"; and "functions undefined out- 

side a f i n i t e  interval" w i l l  m e a n  the same as "f ini te  sequences". 

The most general notion of a dynmical system for  our present 

needs i s  given by the followi~lg 

(1.3) DEFINITION. A dynamical s y s t s  C is a comp&site object 

consjsting of the maps cp, 7 defined on fhe sets  T, U, R, X, Y 

(as above): 

9: T X T X X X R 4  X, 

: (ti 7, X, a )  ~3 ~ ( t ;  7, X, a) 

undefined when~ver t > 7 ;  - 

1: T X X -, Y: (t,  x) t, q(t, x). 

The &ransition mi! QI satisfye,: the following asSumptions: -- 



R .  E. Kalman 

(1.6) - if u, = cuN on [T, t l ,  then for  a l l  s E [7 ,  t ]  

v(S; 7, X j  u)) = v(S; 7, X, a'). 

The definit ion of a dynamical system on t h i s  level  of generality 

should be regarded only as  a scaffolding for  the terminology; interest-  

ing mathemtics begins only a f t e r  further hypotheses are  made. For 

instance, it i s  usually necessary t o  endow the se ts  T, U, a, X, and 

Y with a topology and then require tha t  9 and 7 be continuous. 

(1.7) EXAE4PLE. The classical  setup i n  topological dynamics may 

be deduced from our Definition (1.3) i n  the following way. Let 

T = _R = reals, regarded a s  an abelian group under the usual addition - 
and having the usual topology; l e t  consist only of the nowhere- 

defined function; l e t  X be topological space; disregard Y and q .entirely; 

define g, fo r  - a l l  t, 7 E T and write it as 

g(t; T, x, w) = x - ( t  - T), 

tha t  is ,  a f'mction of x and t - T alone. Check (1.4-5); i n  

the new notation Yley become 

x-0 = x and x - ( s +  t )  = (xhs )* t .  

Finally, require tha t  the map (x, t) I+ x g t  be continuous. 

(1.8) INTEP~ZT+TIOPU'. The essent ial  idea of Definition (1.3) is  

tha t  it axiomatizes the notion of state.  A dynamical system i s  informally 
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a rule for  s ta te  transit ions (the function cp), together with suitable 

means of expressing the effect of the input on the s ta te  and the effect 

of the s ta te  on the output (the function 7). The map cp i s  verbalized 

as follows: Itan input a, applied t o  the system C i n  s ta te  x at 

time -c produces the s t a t e  cp(t; -r, x, co) a t  time t." The peculiar 

definition of an input flrnction (I, i s  used here mainly for  technical 

convenience; by (1.6) only equivalence classes of inputs agreeing over 

[ r ,  t] enter into the determination of cp(t; T, x, cu). "03 not definedtt 

at  t means no input ac ts  on C at time t- 

The pair (7,  x) E T X X w i l l  be called an event of a dynamical 

system C. 

In the sequel, we sha l l  be concerned primarily with systems which 

are finite-dkensicnal, linear, and continuous-time or discrete-time. 

Often these systems w i l l  be also real and constant (= stationary or 

time-invariant). We 'leave the precise definition of these terms i n  

the context of Definition (1.3) t o  the reader (consult KALMAN, FAI;Bj 

o r  ARBIB [I-969, Chapter 11 as  needed) and proceed t o  nabe some ad hoc 

definitions without detailed explanation. 

The following conventinns w i l l  remain i n  force thkoughout the 

lectures whenever the l inear  case i s  discussed: 

(1.91 
n 

Continuous-time. T =  E - U = - FJm, X = FJ , Y = g*, - - 
. . . . 

= a l l  continuous f b c t i o n i  R - -t Rrn - which -ish out- 

side a f i n i t e  interval.- 

(]..lo) Discrete-time. T = g, K = fixed f i e ld  (arbitrary), - 
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U = I?, X = X?, Y = ICP, Q = a l l  functions 

Z - 4 which'are zero for a l l  but a f i n i t e  number of - 
t he i r  arguments. 

Now we have, finally, 

(1.l.l) DEFINITION. A real, continuous-time, n-dimensional, l inear 

dynamical system C i s  a t r i p l e  of continuous matrix f'unctions of .- 
time (I?(-), G(*), ~ ( 0 ) )  where - 

F ) :  - + {n X n matrices over g) - 
~ ( 0 ) :  - R + [n x m matrices over R), - 

H -1 : - -t {p x n matrides over - FJ). 

These maps determine the equations of motion of C i n  the following 

manner : 

dx/dt = ~ ( t ) x  + ~ ( t ) ~ ( t ) ,  

yit! = ~ ( t ) x ( t ) ,  

where t E R, x E gn, urn($) E-gn, 'R, ~ ( t )  E gP. - - - - - - 

To check that  (1.12) indeed makes C into a well-defined dyrmical 

system i n  the sense of Definition (1.3), it i s  necessary t o  r eca l l  the 

basic facts  about f i n i t e  systems of ordinary l inear  different ial  equations 

with continuous coefficients. Define the map 

$(t, r ) :  . R X R -, (n X n matrices over g) - - - 

t o  be the family of n X n matrix solutions of the l inear  different ial  
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equation 

dx/dt = F(t)x, x E R - 

subject to the initial condition 

%(T, T) = I = unit matrix, T E R.  - 

Then b is of class c1 in both arguments. It is called the 

transition matrix o$ (the system C whose ffinfinitesimaJI' transition 

matrix is) ~(0). From this stnnilard result we get easily also the 

fact that the transition map of C is explicitly given by 

while the readout  ma^ is given by 

It is instructive to verie that cp indeed depends only on the equiva- 

lence class of U I ~  s which agree on [T, t] . 
In view of the classical terminology "linear differential equa- 

tions with constant coefficients",we introduce the nonstandard 

(1.15) DEFINITION. Areal, continuous-time, finite-dim3nsional 
\ 

linear dynamical system C = (F(-), G ( * ) ,  H(-)) is called constant 

if'f all three matrix f'unctions are constaht. 

In strict analogy with (l.l5), we say: 

(1.16) DEFINITION. . A discrete-timeZ finite-dimensional, l i ~ s  

constant,dynamical system_ C over K is a triple (F, G, H) of - 
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n X. n, n X m, p X n matrices over the f i e l d  K. These m%ps deter- 

mine the equations of motion of i i n  the following manncr: 

where - t E g, - x E m(t) E K ~ ,  ~ ( t )  E K ~ .  

I n  the sequel, we sha l l  use the notations (F, G- - j or 

F - H) t o  denote systems possessing certain properties which 

a re  t rue for  any H or G. 

Finally, we adopt the folloicing convention, which i s  already 

implicit i n  the preceding discussion: 

(1.18) DEFINITION. The dimension n of a dynamical system - 
X i s  equal t o  the. dihnsion of Xz as a vector space. 
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2. STANDAR9IZATION OF DEFINITIONS AND "CL4SSIC~'FGSULTS 

In t h i s  section, Tie sha l l  be mainly interested i n  f in i te -  

dimensional l inear dynamical systems, although the f i r s t  two 

definitions w i l l  be quite general. 

Let C be an arbi t rary dynamical system as  defined i n  

Section 1. We assume the following s l ight ly special property: 

There exis ts  a s ta te  + and an input such tha t  

cp(t; 7, fi, u+) = for  a l l  t, T E T and t > - T. - 

For simplicity, we write and @ as  0. (When X 

and SZ have additive structure, 0  w i l l  have the usual mean- 

ing.) The next two definitions refer t o  dynamical systems 

with t h i s  extra, property. 

(2.1) 
S DEFINITION. An event ( ) i s  controllable iff. 

there exists a t E T and an w E SZ (both - t - and w may depend 

on (7, X) ) such that  - 

In words: an event i s  controllable i f f  it can be 'transferre 

. t o  0 i n  f in i t e  time by an a p p r ~ p ~ i a t e  choice of the input f'unction 

w. Think of the path fron? (7, x) t o  (t, 0 )  as the graph of a 

function defined over [T, t ] .  

'The technical word i f f  means lf and only i f .  
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Consider now a reflection of t h i s  graph about r. This . 

suggests iz new definit ion which i s  a kind of "adjoint" of the 

definition of controllabili ty:  

(2-2) DEFINITION. An event (T, x) i s  reachable i f f  there 

%s an s E T and an- u, E Cl (both s and o, may depend on - - - 
(7, x)) such tha t  - 

We e.mp:iasize: controllabili ty and reachability are entirely 

different concepts. A strzking example of t h i s  fact  i s  encountered 

below i n  Proposition (4 -26) . 
We shal l  now review brief ly  some well-known c r i t e r i a  for  and 

re1ation:;'betveen reachability and controllabili ty i n  l b e a r  systems. 

(2.3) PROPOSITION. I n  a reel, cont inuous-time, f inite-dimensiona~, 

l inear dynmical system C = (F( * ), G( 9 ), - ) , an event (T, x) 

(a) reachable i f  and only i f  x E range Q(s, r )  for  - 
some s € R, s < r, where - - 

G(s, T) = .lT Q*(T, C)G(U)G'(C)O;(T, U)& 
. s 

(b) controllable if an only if x E range ~ ( r ,  t )  for - 
some t E It, t > T, where - - - 

The original proof of ( 3 )  i s  i n  KALMAN [1960b]; both cases 

are t reated i n  & t a i l  i n  KAMANt FALB, and L W B  [1969, Chzpter 2, 
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Section 21. Xote that  i f  G ( * )  i s  identically zero on (- =, rj 

we cannot have rezchability, and i f  G(-) is idznticzlly 

zero on (T, + a ~ )  we cannot have controlkbi l i ty .  

For a constvlt syskm, the h t e g r a l s  above depend only on 

the difference of Yne limits; ker-ce, i n  p r t i c u l z r  

(2.4) P R O ~ I T I O N .  In a real, continuous-tlbe, finite-dinensional, 

linear, constant ~ - m L c a 1  system a2 even'; (T, x) i s  rezcbble 

for a l l  r i f  and only if it i s  rezchable for one T; sn ev2nt 

i s  reachable if and only i f  1'; i s  cc\~itrolla.'Dle. 

From (2.3) one can o b G h  i n  a streigbtfor.~-a-d fashion zlso 

tile following m c h  stronger result: 

THEOEI4. a real, co~ t i an~us - t ine ,  n-&ensj.o~2!, 

i s  reachabfe (or, equivzlently, controllcble) 9 r tl R -- 
i f  and o a v  i f  -- - 

i f  t h i s  condition i s  sztisfied. we can choose s = T - 6: t = r i- 6, 

with 6 > 0 arbitrzry. (me sgan of E. seqv-ence of m t r i c e s  5s t o  - 
be inteqheted as the vector space generated by the columns of 

these r;s.tricrts.) 



A proof of (2.5) m y  be found iil KAlXQJ, HO, and IIILWNDRA 

[19631 and i n  gllLMAN, FAD, and ARBIB [I$@, Chapter 2, Section 

31. A trivial but noteworthy consequence i s  the fact  tha t  t3e 

definition of reachable s ta tes  of C i s  "co~rdinate-free": 
- - 

(2.6) COROLiAQY. The se t  of reachzbie (or controllable) 

s ta tes  of C i n  Theorem (2.5) i s  a subspce of the r ea l  vector 

space Xz, t he  s t a t e  s p c e  of Z. 

Very of'ten the attention t o  individuzl s ta tes  i s  unnecessary 

II end therefore mvly authors prefer t o  use the terniaology C is 

cmpletely reachable at T" for  "every event (-c, x), .r = fixed, 

It x E is reachable", or 2 conpleteljr reacbsble" fo r  "evesy 

event; i n  Z i s  reachable", etc. Thus (2.5), together with the 

-ley-Hamilto?l theorem, inplies the 

(2-7) BASiC L!Jil+lA. A real, continuous-t ime, n-db.e?lsional, 

l inear,  constant Q W c a l  systen C = (F, G, -) s co~p le t e ly  

reachable i f  an only i f  

Condition (2.8) i s  ~ e r y  well-&own; it or  equivalent foms of 

it have bsen discovered, expl ici t ly  used, or h p l i c i t l y  assumed by 

many a-rlthors. A trivially equivalent form of (2.7) f s given by 

(2.9) COROLMRY 1. A constant system C = (F, G, -) - i s  

completely reachable if and only if the s ~ s l l e s t  F-invariant 

subspace of conteining ( a l l  colu~m vectors of) G i s  ]t - 
i t s e l f .  -- 
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A useful variant of the l a s t  fac t  i s  given by 

(2.10) COROLLARY 2. (w. ~ahn) Aconstant system C =  (F, G, -) 

i s  completely reachable i f  and only i f  there i s  no nonzero elgen- 

vector of F which is  orthogonal t o  (every column vector of) G. 

FinaUy,  l e t  us note tht, far from b e i q  a technical condi- 

tinn, (2.5) has a direct  system-theoretcc interpretation, as 

f oilows : 

(2.~) PROWSITION. The s ta te  sozce % of a reel, continuous- 

time, n-dimensional, l h e a r ,  constant dy-nmical sys';en~ Z = (F, G, -) 

may be written a s  a direct sum 

which induces a decomposition cf the equztions of notion as (obvious - 
notations) 

The subsystem 5 = ( F ~ ,  GI, -) i s  completelv reachable. Hence 

a s ta te  x = (2, x2) E 3 i s  reachable if and only if x = 0. 2 

PROOF. We define X1 t o  be the set  of reachable s ta tes  

of 2; - br (&5)  t h i s  i s  w F-invariant subspace of %. Hence, by 

finite-dhensionalityj  XI i s  a direct s m d  i n  . construc- 

t ion, every s t a t e  i n  q is  reachzble, and (every column vector of) 
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G belongs t o  Xl. Ihe F-invariance of X implies tha t  1 

FU = 0, which implies the asserted form of the equations of 

motion. 0 

(223) -. Note that  X2 i s  not intr insicalw-dcfined 

( i t  depends on an arbi t rary choice i n  completing the direct sum). 

Hence t o  say that  "(0, x2) i s  an unreachable (or uncontrollable) 

s t a t e  i f  x2 # 0" i s  an abuse of language. More precisely: thp 

set  of a l l  reachable (or controllable) s ta tes  has the structure of 

a vector suaeg b d t h e  set  of a11 unreachable (or uncon-i;rollzbl.e) -. 
states  does not have such structure. This fac t  i s  imgortaat t o  

bear i n  mind for  the algebraic deve10,oment which follows after 

t5is section znd also in the definition of observability and 

construct ibi l i ty  below. I n  general, the direct  sum cannot be 

chosen in such -a way tha t  F,,, = 0. - 

While condition (2.8) has been frequently used as a technical. 

requirement i n  the soluticn of various optimal control problems i n  

the l a t e  1950's, it was only i n  1959-60 t'at the relat ion between 

(2.8) and system theoretic questions was c la r i f ied  by lYALMAN [lgbOt~-c] 

via Definition (2.2) and Propositions (2.5) and (2.l.l). (see Section 

11 for  further details.) In  other words, without the preceding 

- discussion the ase of (2.8) may appear t o  be 2-rtif icial ,  but i n  fac t  

it i s  not, a t  l eas t  i n  problems i n  which control enters, because, 

by (2.12) control problems stzted fo r  % are  nontrivial only with 

respect t o  the intrh>.sic subspace . *1 
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The hypothesis "constant" i s  by no means essential  for  

Proposition (2.11), but we must forego further comments here. 

For l a t e r  purposes, we s ta te  some fac ts  here for discrete- 

time, constant l inear  systems a ~ a l c g o ~ s  .to those already developed 

for t h e b  continuous-time counterparts. The proofs a re  straight- 

forward and therefore omitted (or given . later,  for  i l l u s t r a t ive  

(2.14) PROPOSITION. A s ta te  x of a real, discrete-time, 

n-mensional, linear, constant dyxanical system C = (F, G, -) 

is reachable if and only i f  

(2.15) X E  span(G, FG, ..., lT1G). 

Thus such a system i s  completely reachable i f  a2d only i f  (2.8) 

holds - 
(2.16) PRORX1'TION. A s ta te  x of the system Z described 

i n  Proposition (2.14) i s  controllable i f  and only i f  

(2.17) 3, E span (F-'G, . . . , F%), 

where - 

(2.18) PROR3SITION. I n  a real, discrete-time, finite-dimensional, 

linear, constant dynamical system C = (I?, G, -) a reachable s ta te  

i s  always controllable and the converse i s  always t rue whenever 

det F # 0. 



Note also tha t  Propositions (2.11) and i t s  proof contime 

If t o  be correct, without any modification, when continuous-the" 

i s  replaced by "discrete-time". 

Now we tu rn  t o  a discussion of observability. 

The o r i g i m l  defilnition of observability by W i ~ ~ [ l g 6 0 b ,  

Definition (5 -23) 1 was concocted i n  such a way as t o  take advan- 

tage of vector-space dwl i ty .  The conceptual problems surround- 

ing duality a re  easy t o  handle i n  the l inear  case but a re  s t i l l  

by no means fully understood i n  the nonlinear case (see Section 

10). I n  order t o  get at  the main fac ts  quickly, we sha l l  consider 

here only the l inear  case and even t3en we sha l l  use tk-under-  

lying idea of vector-spzce duali%y in a r~ t lner  ad-hoc fashion. 

The reader wishing t o  do so can easi ly  turn our r m r k s  into z. 

s t r i c t l y  dual treatment of fac ts  (2.1)-(2.12) with the a id  of 

5he setup in t r~duced  i n  Section 10. 

(2.19) DEFIPITION. An event (T, x) i n  a real, continuo~s- 

time, finite-dimensional, l inear dynamical system C = (F(*), -, H(*)) 
i s  unobservable iff 

H(s)$(s, T)X = 0 for  a l l  s E [r, a). 

(2.20) DEFINITION. With respect t o  the same system, an event 

(7, z )  is unconstructible* i f f  

*In the older l i terature,  s tar t ing with KAL2AN [ ~ g a b ,  
Definition (5.23)], it i s  - t h i s  r . ept which i s  called "observabilityl'. 
By hindsight, the  present choice ci;words seems t o  be more natural 
t o  the m i t e r ,  



R .  E. Kalman 

H(C)%(U, r )x  = 0 for a l l  u € (- w, TI. 

The motivation for  the f i r s t  defir-ition i s  obvious: the 

11 occurrence" of an unobservable ?vent cannot be detected by look- 

ing at the output of the system a f t e r  time T. (The definition 

subsumes LD = 0, but this i s  no loss  of generality because of 

linearity.) The motivation for  the second definition i s  less  

obvious but i s  i n  fzct strongly suzes ted  by s t a t i s t i c a l  f i l t e r ing  

theory (see Section 10). In any case, Definition (2.21) comple- 

ments Definition (2.20) in .  exactly the same way as Definition (2.1) 

complements Definition (2.2). 

From these definitions, it is very easy t o  deduce the follow- 

ing cr i ter ia:  

(2.21) PROIQSITION. I n a  real, continuous-time, finite-dimensional, 

l inear dynamical system Z = (F(*), -, ~ ( 0 ) )  an event (T, x) - i s  

(a) unobservable i f  and anfy i f  x E kernel %(T, t )  

for a l l  t € 3, t > 7, where - 

(b) unconstructible i f  and only i f  x E kernel ~ ( s ,  7) 

_for a l l  s E R, - s < T, - where 
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PROOF. Brt (a) follows immediately from the observation: 

x E kernel ~(r, t) @ H(s)@~(s, r)x = 0 for all s E [ r, t]. Part 

(b) follows by an analogous argument. 

(2.22) REMARK. Let us compare thfs result with Proposition (2.3), 

and let us indulge (only temporarily) in abuss of language of the 

following sort :* 

('F, x) = unreachable @ x E kernel $(T, t) 

for all t > r 

and 

(r, $ = observable x E range d(~, t) 
for some t > T. 

From these relatims we can easily deduce the so-called "duality 

rules"; that is, problems involving observability (or constructibil- 

ity) are converted into problems involviag reachability (or ~ontrol- ., 

lability) in a suitably defined dual system. See KAIMAN, FALB, 

and ARBIB [1969, Chapter 2, Proposition (6.12)l and the broader 

discussion in Section 10. 

We will say, by slight .&use of language, that a system is 

completely observable whenever 0 is the only unobservable state. 

Thus the Basic Lemma (2.7) "dualizes" to the 

(2.23) PXOPOSITION. A real, continuous-time or discrete-time, 

n-dimensional, linear, constant dynaruical system Z = (F, - , H) 

11 
* A l l  this would be strictly correct if we agreed to replace 

It 
direct sum" in Proposition (2.11) and its counterpart (2.25) by 
orthogonal. direct suint' ; but this would be an arbitrary convention 
which, while convenient, has no natural system-theoretic justifica- 
tion. - ,Rerezd '~er&$k. '(2.. 13). 



is completely observable if and only if 

(2.24) r ( F . . . ( F ) )  = n. 

By duality, com2lete constructibility in a continuous-time 

system is equivalent to observability; in a discrete-time system 

this is not true in general but it is true when det F # 0. 
It is easy to see also that (2.11) " .afizes" to: 

(2.25) PROPOSITION. !The state space 3 of a real, continuous- 

time or discrete-time , n-dimensional, linear, constant dynamical 

system C = (F, -, H) m y  be written as a. direct sum 

and the equations of C are decomposed correspondingly as 

PROOF. Proceed dually to the proof of Froposition (2.11)' 

beginning with the definiticn of X1 as the set of all - unobservable 

states of C. 

Combining Propositions (2.11) and (2.25) gives Theorem C as in 

KALMA.N [ 1962 I . 
This completes our survey of the "classical" results related 
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t o  reachabilitjr, controllabil i ty,  observability, and 

constructibil i ty.  

The remining lectures w i l l  be concerned exclusively with 

discrete-time systems. The main motivation fo r  the  succeeding 

develop~~ents will be the  algebraic c r i t e r i a  (2.8) and (2.24) 

as well as a deeper exanhat ion of m-eorens C and D of t he  

Introduction. 
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3. DEFINITION OF STATES VIA NERODE EQUIVALENCE CLASSES 

A c lass ica l  dynamical system i s  essentially the action of the 

time set  T (= reals) .on the s tates  X. I n  other words, the 

s ta tes  a re  acted on by -an abelian group, namely (f! + usual - 
definition of addition). This is  a t r i v i a l  fact, but it has deep 

consequences. A (modern) dy-namical system i s  the action of the 

inputs on X; i n  exact analogy with the classical  case, t o  

the abelian structure on T there corresponds an (associative 

but noncomutative) semigroup structure on Q. The idea that  Q 

always admits such a structure was apparent';; overlooked u n t i l  

the l a t e  1950~s when it becam* fashionable i n  automata theory 

(school of SCHUTZENBERGER) . . !Phis seens t o  be the "right" way 

of translating the i n t ~ i t i v e  notion of dynamics in to  mathematics, 

and it w i l l  be fundamental i n  our succeeding investigations. 

I'G i s  convenient t o  assume fron now on, u n t i l  the end of 

these Lectures, tha t  

(3.1) T = time set  = - - Z = additive (ordered) group of 

integers. 

Since we shall Le only interested i n  constant systems from 

here on, we sha l l  adopt the following normalizaticn convention:* 

*In the discrete-time nonconstant case, we would have t o  deal 
with Z copies of Q, ezch normalized with respect t o  a different 
p a r t i c a r  value of T E 8. - 



R e  E. Kalman 

(3.2) No element of 0 i s  defined for t > T = 0. 

In  view of (3.2), we can define the lo1 of (I, by 

Iw l  = max [ - t  € g: w i s  fiat definad for  -&q s < t ) .  - 

Biifore defining the semigroup on 52, we introduce another 

fundamentsl notion of dynamics: the ( l e f t )  shift operator ui, 

defined for a l l  Q > 0 in Z_ by - - 

Note that  the definition of on i s  comgatible with the normaliza- 

t ion  (3.2). 

If TU n Ju, = empty for  cu, u' E Q, we define the join 

of w and w' as the function 

" on Jd 
(3.4) w y 0' = 

C"' on J,,. 

When Q has an additive structure, then we replace u, co' by u, + cur.  

(3.5) DEFINITION. There is  an associative operatia 

o : X 0 3 J2, called concatecation, defined by 

. 
Note that, by (3.2) through (3.4), i s  well -defined. 

Note also tha t  the asserted existence of concatenation re s t s  

on the fact tha t  R' ir: nade up of flmctions defined over f in i t e  

intervals i n  . T. We might express the content of (3.5) also as: 

Q i s  a semigroup with valuation, since e15dently fuov 1 = + 1 ~ 1 .  



In view of (3.5), it is natural t o  use an abbreviated no ta t ios  

also for the transition fhmtian, ss follows: 

ITOW we come t o  an important nonclsssical concept in dyxmmical 

system, u b s e  evolution was strongly influenced by problems i n  

comm+-~~t ions  and autaata theory: a discrete-time constant 

input/output map 

We kterpre t  th is  map as follows: y(1) is the output of same 

system C (say, a &igi&l c-uter) uhen C is subjected t o  . 

the (f5nite) ingut sequence o, assuming that C is some fixed 

initial equilibrium state before the application of a- 'fhis 

definition automatically incorporates the notions of Udiscrete- 

tinen as well as "causaln or "dynamics" (the l a t t e r  because 

y(t) is not defined for t < 1). However, (3.7) does noz; 

clearly imply "constancy" (implicitly, however, t h i s  i s  clear from 

the nomaUzation a s s q t i o n  (3.2) on Q) . To nake the definition 

more forceFul, we dend f t o  the map 

- . (3.8) f: a + I' = Y x Y . . . (infinite cartesian prcc2uct) 

: a t+ ( f ( 4 ,  f(c$~), - * -  1 = (~(11,  ~!2), 0-• 1. 

- 
Interpretation: f gives the output sequence Y = (y(l), ~ (21 ,  

of the system Z af'ter t = 0 resulting from tha applicatior cf an 

Wbserve that xw i s  the s t r i c t  analog of the notation xt 
custmary i n  topalogical dynmics. The action of u, oh x satis- 
f ies xo(u,ot.: = ( x a )  o v  in view of (1.5) 
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input w which stops at t = 0. 

Tbis definition e-presses causality more forceflrlly m d  

incorporates consfaac:r, provided we define the ( l e f t )  shift 

operator ur on I' so as to be comptible w i t h  (3.3). So, 

for any r > 0: c € Z, let - - 

Note: the operator "appendstt an undefined term at 0, the 

operator cr "discardsw tfle term y(1). 

Now, drcppkg the bar over f, we adopt 

(3 - 10) DEFSLJITION. A discrete-time, constant input/output map 

(of some underlying ~vnanical systm Z) is any map f such that 

the following diagram 

is comutztive. We seg %hat f is linear iff it is a K-~ctor 
7- 

s ce hm~rnoru?~ i  sm J z . - . t ' " - *  

It w i l l  be convenient to regard (3.10) as the exker~~l - 
.dsfinition of a dymmical system, in contrast to the internal 

definition set up in Section 1. 

Intuitively, we shculd think of f as a highly idealized 

kind of experimzntal data; azmely, f incorporates all possible 

infomation that could be gained by subjecting the underlying 
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system t o  eqerinents in  which only input/output data i s  avail- 

able. This point of view i s  related t o  experimntd physics the 

same kqv as the classical notion of a dymmlr ld , l  system is  related 

t o  Newtonian (axiomatic) pwsics. 

The basic question which mtivates much of what -~ll follow 

can now be formulated as follows: 

(3. EL) PROBISM OF REALIZATION. Given only the knowledg~ of 

f (but of course also of Z, R, and I') how can we discover, - - 
i n  a =thematically consistent, rigoross, and nztural way, the 

propertles of the system wh5-ch i s  sup~osed t o  underlie the 

piven input/output map f?  

This suggests immediately the follcsiing fbdmental  concept: 

(3.12) DEFINITIOII. A fixed dynamical systex C (internal 

definition, as  i n  Section 1) i s  a realization of a fixed input] 

output map f O  fo = fZ , that  is,' f i s  identical with 
0 

0 

the input/output map of k. 

In  view of the notations of Section 1 plus the special- con- 

vention (3.6), the explicit. form o f  the realization condition i s  

simply that 

(3.u) f o b )  = -  % (% (0; - 14, *, 4) 
0 0 

for all w Q. ~ n e  symbol * stands for an arbitrary equili- - 

brim state in viich Eo remeins, by definition, un t i l  the 

application of o. (Later we simply tahe * to  be 0.) , 
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To solve the realization problem, the cr i t ica l  step i s  t o  

induce a definition of X (of some zo) from the given fo. 

It i s  rather surprising thst this step turns out t o  be trivial, 

on the a b s t r k t  level. (on the concrete level, however, there are 

many unsolved problems i n  actually computing what X is. In 

Section 8, we s h a l l  solve this problem, too, but only i n  the 

line= case.) The essential idea seems t o  have been published 

first by NERODE [19~81: 

(3.14) DEFINITIQPJ. Make the concatenatron semigroq i2 - into 

a monoid by adjoining a neutral elptueilt .- @ (which i s  the nowhere- 

defined flrnction on Z). Then u, = at : o i s  Nerode - - -f 

equivalent t o  ot Gth respect t o  f )  iff 

f(oov) = f(co8o~) for a l l  v E Q. 

There are n;-w~r intuitive, physical, historical, and technical 

reasons (which are scattered throughout the literafare and cone=-a 

trated especially strongly i n  ICABUI?, FALB, and ARBIB [19691) for 

using t h i s  as the 

(3.15) MAIN DEElNl!CION. The set  of equivalence classes under 

- denoted as  Xf =. ( ( ~ 0 ) ~ :  cu E Q), is the state set of the =f' 
iput/output ma2 f. 

Let us verify inimediately. that (3. S) makes sathemstical 

sense: 
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(3.16) ' PROPOSITION. For each linear, constant input/output ma2 

f there exists a dynamical system Zf-. such that 

(a) Ef realizes f; 

PROOF. We show how t o  induce C p  given f. We 

define the state set  of Zf by (b). Ftnther, we define the 

transition f'unction of C by 
f 

a We must check that on the l e f t  of = i s  well defined (note 

two different uses of ! )  that is, fudependent of the repre- 

sentation of x as - (4 . T U s  follows trivia- from (3.14) . 
llov we define the readout map of Ti by 

Again, this map i s  well defined since we can .We V = $8.. as a 

special case i n  (3 -14) . Then 

('L*V) = % = f(a.v), 
f f 

and the realization conditiw~ (3.6) i s  verified. Hence claim (e )  

. i s  correct. 0 

(3.19) COMMEXCS. In' autanata theory, Zf - i s  known as the 

; reduced form of.ary system which realizes f. Clearly, say two 



reduced forms are isomorphic, inthe set-theoretic sens?, since 

the set Xf is intrinsically defined by f.  his observation 
is a weak version of Theorem D of the Introduction; here "unique- 

ness'' mcans flmodulo a pernutation of the labels of elements in 

the set x~".) Kootics also that LC is con~letely reachable 

since, by Definition (3.15 I ,  every element x = of Xf 
is reac-habie via any elmefit cut - in the Xerode equivzleact class 

(u)~. As to observcbility c? .Zf, see Section 10. 
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4. MODULE3 ' INDUCED BY LINEAR INHJT/oIPTPUT MAPS 

We are now yea* to enhark on the main topics of these lectures. 

It is assumt, that the reader is conversant w 5 t ~  modern algebra (espe- 

cially: abelian groups, commutative rings, fields, modules, the ring 

of polynomials in one variable,and the theory of elementary divisors), 

on the level of, sag, VAN DER WAERDEN, LAI?G [1965 I, W [ 1965 1 or 

ZARISKI and SAMUEL [1958, Vol. 11. The material covered fram here 

on dates from 1965 or later. 

Standing assumptions until Secticr-. 10: 

(4.1) All systems C = (F G H) are discrete-time, linear, 

constant, defined over a fixed field K (but not necessarily 

f inite-dimensional) . 
Our immediate objective is to provide the setup and proof for the 

(4-2) THEOREM OF ILNEAR SYSTEM THEORY. The natural 

state set Xf associated with a discrete-time, linear, constant input- 

output map f over a fixe6 field K admits the structure of a finitely 
- 

senerated module over the ring K[z] of polynomials (35th rndeterminate 

z and coefficients in K) . 
(4.3) CWME31TS. Since tke 5ing ~[z;] will be seen to be related 

to'the inputs to C, this result bss a superficial resemblance to the 

fact that in an arbitrary m e a l  system C the state set 3 admits 

the action of a semigr~up, namenamely (see (3.5) and related footnote). 

It turns out, however, that this action of R on X, which results 

fram camblrAng the concatenation product in R with the d~f~iition of 
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states via Nerode equivalence, is incompatible with the addit;ive 

structure of S2 [KAI&WJ, 1967, Section 31. O u r  theorem asserts the 

existence of an entirely different kind of structure of X. This 

structure, that of a K[ zl-module, is not just a consequence of 

dynamics, but-depends critically on the additive structure on Q 

and on the linearity of f. The relevant multiplication is not 

(noncommutative) concat enat ion but (commutative) convolution (because 

convolution is the natural product in KLz;]); dynamics is thereby 

restated in such a way that the tosls of commutative algebra become 

apglicable. In a certain rather definite sense (see also Rzmark 

(4.30)), Theorem (4.2) expresses the algebraic content of the method 

of the Laplace transformation, especially as regards the practices 

developed in electrical engineering in the U.S. during the 1950's. 

The proof of Theorem (4.2) consists in a long sequence of canoni- 

cal constructions and the verification that everything is well defined 

and works as needed. 

In view of (4.1) and the conventions made in Section 1, R may 

be viewed as a K-vector space and m(t) = 0 for almost all t E Z_ - 
and all o E Q. convention (3.2 ), we have assumed also that ' 

m(t) = 0 .for all t > 0. As a result, we have that: 

(a) Q Km[z] gs a ' zctor space. Let us exhibit the isonor- 

phism explicitly as follows: 

By (3.2 ), the sun in (4.4) is always finite. The isomorphism 
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obviously preserves the K-linear structure on Q. In the sequel, we 

8hall not distinguish sharply between m as a function T -r K? and ' 

a as an in-vector polynomial. 

(b) Sl is a Pree az]-module with m -p 

Sl Icm[z] also i n  the K[z]-module sense. In fact, we define the 

action of a z ]  on Q by scah r  multi-plication a s  

0: I[[=] X n + n: (a, 01 f-3 7r.U 

(ma E ~ [ z ] ,  j = 1, ..., m). 

The product of a with the components of the vector m i s  the 

product i n  a z ] .  W e  write the scalar product o i  the left,  to'avoid 

any cornsion with notation (3.6 ) .' It is easy t o  see that the module 

axioms are verified; SZ is  obviously free, w i t h  generators---: 

+- j-th position, j = 1, ..., m. 

( c )  Q the action of the shift  operator on i s  represented 

by .multiplication by z. !RI&s, .of course,. i s  the nuin -reason_for 

-ine~ducucjng the isomorphf.~~ (4.4) i n  the f i r s t  place. 
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(d) Each element of r is a formal power series in z-l. In fact, 

(4.4) suggests viewing d as an abstract representation of - t E Z; - 
hence we define 

By (3.8 ) and (4.1), r(t) E KP for each t > 1 and is zero. (or 

not defined) for t < 1. In general the sum is W e n  over infinitely many 

nonzero terms; there is no question of convergence and the right-hand side 

of (4.7) is to be interpreted stictly aLgebraically as a formal power 

series. Since Y(Q) is always zero (see (3.8)), .we can say also .: 

that 

(e) l? is isomorphic to the K-vector subspace of ICP[ ( Z-'1 1 

(form1 power series in i1 w i t l  coefficients in K ~ )  ~onsistine 

of a11 power series with 0 first terr?. 

The first nontrivial construction is the following: 

(f) r has the structure of a K[z] rliodule, with scalar 

multi~lication defined as 

This product may be interpreted an the ordinary product of a power 

-1 
series in z by a poQmmialin z, .followed by the deletion of . 

a l l  terms containing no. negative powers of z. The verification of 

the module axioms is straightforward. 
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(g) . f is K[z] homomorphism. This i s  an inrmediate conse- 

quence of the fact that f = constant (see (3.10))'and that multipli- 

cation by z corresponds t o  the l e f t  shif t  operators on Q and I'-. 

(h) ' The Nerode equivalence classes of f are isomorphic with 

Qlkernel f.  !Chis is an easy but highly nontrivial lemma, connecting 

Nerode equivalence with the module structure on 0. The proof i s  an 

immediate consequence of the formula 

In fact, by K-linearity of f, . (4.9) implies 

~ ( U Q V )  = f(w1ov) for all v E R 

if  am3 only if  

f ( 8 . d  = f(zk*ub) for  a ~ .  h > - o i n  - P. ' 

The proof of Theorem (4.2) i s  now complete, since the l a s t  

lemma identifies Xf as defined by (3.15) w i t h  the K[z] quotient 

We write elements of the l a t t e r  as [uIf = w + kernel f; then 
.. .. 

it is  clear that Xf as a Uzl-module is generated by [ellP ...., [em]*, 

since Q i t se l f  is generated by e ,  . . . , e (see (4.6) ) . Note also m 

thpt the scalar product in Q/kernel f i s  

The l a s t  product abom (that in Q) has already been defined i n  (4.5). 

The reader sllould verify directly that (4.10) gives a well-defined 

scalar product. 



(4.11) KEMARK. There is a strict duality in the setup used to 

define f. From the point of view of homological algebra [KG LANE 

19633, this duality looks ss follows. Since every free module is 

projective, - the natural map 

ex3ibits X as th.e imge of a projective module. On the other 
f 

hand, there is a bijection between the set X and the st:. 
f 

I 

fif is clearly a K[ el-subnodule of I' (with zm f (m) = f (z-m)), 

and so Xf and $. are isomorphic also as K[c]-modules. It is 

known that is an injective F.. .~le [MU W E  1963, page 95, 

Exercise 21 So the natural map :if -t : ["If H ?(a) efiibits 

Xf as a submodule of an injective mocl.:,:' .. .. . This fact i~ basic in the 

co?-stsuction of the :'transfer flm~ticn~~ associated with f (section 7), 

but its rull implications are not yet understood at present. 

There is an easy counterpart of Theorem (4.2) which concerns a 

dynamical system given in "internal" form: 

(4.12) PROPOSITION. The state set of every discrete-time, 

fi'nite-dimensional, linear, constant -dynamical system C = (F, G, -) 

admits the structure of' - a K[z]-module. - 
FWXlF. definition. (see (1.10)), X = K" is already a 

K-vector space. We make it into a K[ z 1-mdule by defining 



(4.13) : K [ Z ] X ? +  K?: (a, x)- T(F)X. 

(4.14) CoME.IENT. The constructi~n used 5 .  the proof of (4.12) is  

the classical t r i k o f  studying the proper$ies of a fired unear  map 

F: K? + via the Uzl-module stracture that F induces on 

by (4.13). In view cf tbe canonical construction of Z provided by f 
Bopositian (3.16), the stzte set X can be treat& as a Uzl- 

module irrespective ss t o  whethe1 T i s  constructed f r a  f (X = xf) 

or given a priori ss part of the specification of Z (X = %) ). Thus 

the K[z]-mdule s t ruc tue  on X is a nice of W t h g  the "e-uternalw 

and the l'ini;ernall' definitions of a dymIr&cal system. Henceforth we 

shall t a l k  about a (33 screte-time, linear, constant dynanical) system 

Z somewhat imprecisely via properties of its associated K[ z]-module 3. 

We s U  no* give s m  examples of p ing  &e-theoretic language 

t o  eKJress standard facts encomtered before. 

(4.15) PROPOSI'SIIQN. - I f  X is the state-module of C, the map . 

F i s  g i v e r ~ 5 ~  X-> X: xr-.. z-x. C - 

PROOF. This is  nbviaus from ( 4 . ~ 1  if X = T.  If X = Xf = sf, 
then we find tihat, by (1.1'7), 

sbce  x(@] results frarr, i- put 9, x(1) results from icput -z-6 + ~ ( 0 )  
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and we get 

So the assertion is again verified. 0 

Now we can replace Proposition (2.16) by the much more elegant 

(4.16) PROPOSITIO~. A system C = (F, G, -) is completely reachable 

if and only if tht colurmis of .G pe~erate  s. 
PROOF. The claim i s  that complete reachability i s  equZva- 

lent t o  the fgct that every element x E - i s  expressible as 

In view of (4-lS), this is the  sane as requiring that x be eqressible 

this last condition i s  equivalent to com_nlete reachability by (2.14). 0 

(4.17) COROIUEtY. The reachable states of C are precisely 

those of the si~hm"Ct1'Ie of - 5 generated.by (the columns of) G. 

(4.18) P . .  The statement that "C i s  not conqIetely reachable" 

~imoly means that X is - not generated by those vectors wf3ch make up 

the mt.r.ijr G in thz specificatf on of the iuput side tt +;he system C. 
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It does not folLow that X cannot be f ini tely generated by some other 

vectors. In fact, t o  avoid unnecessary generality, we shall. Lenceforth 

assume that 

X is  always f ini tely generated over K[ z] . 

From the system-theoretic point of view, the case when we need 

infinitely many generators, that is, infinitely lnany input channels, 

seems rather bizzare a t  present. . 

(4.19) PROWSITION. The syshsrm Xf i s  completely reachable. 

PROOF. Obvious from the notation: a state x = [ Elf 

is reached by 5 E a. n 

(4.2Q) PROPOSITION. The system Xi i s  completely observable. 

PROOF. Obvious feom Lema (h) above: q( ["If) = f (u) = 0 

i f f  o i [0If, which ws that the only unobservable state of Xf 

Let us geceralize Vas Ust result t o  obtain a rm21.XLe-thecretic criterion 

for complete observability. There are two technically different ws of 

doing this. The first depends on the observation that the '+iualI1 of a 

subnodule (see CcroUary (4.17)) is a quotient module. The second defines 

observability via the "dual1 system ( F  Kt, ) associated with (F, -, H) . 
Consider a meal system C = (F,. -, H) and the corres~nding 

K[ zl-module % and K-hommrphisrn H: 3 + Y - K'. We can extend H 
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t o  a K[z I-horromorp~sm (look back a t  ( 2  .8)) by setting 

From Definition (2.19) we see that no nonzero element of the quotient 

module %/kernel ?i is unobserwkle. Hence, by abuse of lengmge, we 

can s a y  that %/kernel i s  the sodule of observable states of E. 

Thus we arrive at was* the comterparts of (4.16-17) i n  the follow- 

ing language: 

(4.21) PROPOSITION. A system C = (F, -, H) .is comletely observable 

if adonly if the quotient module %/kern21 is isomorphic with t. 

(4.22) CCROLLARY. The observable states of C are t o  be identified 

with the elements of the quotient module %/kernel E. 

(4 -23) ~ T O I C G Y .  The preceding considerztions suggest v i e h i -  

a system Z as essentially the sane ltthbg" as a module X. Strict ly 

speaking, however, !mowing Z = (I?, Gj  H) gives us not only & = % 
Y 

(see ( 4 . ~ ) )  bct also a quotiant module! (over kernel E) of a sub- 

module {thet generated by 0)  of + that i s  

If $ 5 we say that 5 is canonice1 {relative t o  the given 4 H) . 
To be more precise, l e t  us observe the following stronger version 

of (4.19-20) : 
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(4.24) CORRESPONDENCETHEORE2~1. Thereisabijectivecorrespondence 

between K[z]-homomorphisms f: S! -, F and the equivalence class of 

completely reachable and completely observable systems C modulo a 

basis change i n  3. 
Detailed discussion of t h i s  result  is postponed u n t i l  

Section 7. 

A s t r i c t e r  observatioa of the Itduality principlet1 leads t o  

(4.25) IEFINITION.  The K-linezr dual of C = (I?, G, H) - i s  

C* = (F', Ha, GI)  ( 8  = matrix t r a n ~ ~ o s i t ~ o n ) .  The s tates  of 

C* are  called costates of C. 

The following fact i s  an M e d i a t e  conse.yence of this definition: 

(4.26) PROPDSITIOI?. The s ta te  set  X&* of E* may be given the 

structure of K[c'] module, as  follows: ( i )  es a vector s p c e  H2, 
i s  the dual of 5 regarded a s  a K - ~ c t c  space, ( i i )  the scalar 

product i n  s* i s  defined by 

(b.26A) RWWC. %e ccanrd define %* as H o ~ [ ~ ~ ( ~  ~ [ z l )  equal t o  

Uz]-linear dual of 5, because every^toraion module M over an iategrsl  

anmain D has a trivial D-dual. However, the reader can verify (using 

the ideas t o  be developed in Section 6) that  X,.* defined above i s  iso- 

noqhic with ~ Z l ( ~ , ~ ( ~ ) ~ ~ ] ) .  See SOURBRRI [Alg&bre, Chapter 7 

(2' dd. ), Section 4, &. 81. 
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Now we v e r i a  easily the follo-wing dual statements of (4.16-17) : 

(4.27) PROPOSITION. A system C = (F, -, 8) i s  completely observable 

i f  and only i f  HI jenerztes %+. 

(4.23) C O O :  The observable COstates of C* are precisely 

th5 reachable --;+.Z;eb . --- of C*, that is,  those of the submodule of - 
* generated bx HI. 

We have eliminated the abiise of languzge incurred by talki lg 

about "observzble sta%estr though introduction of the new notion of 

"observable COstatesl'. The full explication of why th i s  i s  necessary 

(as well as natural) is postp~ned un t i l  Section 10. 

The preceding simple fzcts depend only on the notion of a module 

and are immediate once we recognize the fact that F may be eliminated 

from statenients such as (2.8) by passing t o  the mdule induced by F 

a ( 1 )  But module theory yields many other, less obvious results 

as well, which derive mainly fram the fact that . I(lz] is a principal- 

ideal domain. 

We recall: sn element m of an R-module W (R = arbitrary 

commutative ring) has torsion i f f  there i s  a r E R such that 

r - m  = 0. I f  t h i s  i s  nf>t the case, m i s  free. Similarly, M is 

said t o  be a torsion module i f f  every element of M has torsioil. 

M is a free module i f  no nonzero element has +,orsion. I f  L C M  

is any s ~ b s e t  of K, the annihilator t of L is  the set  

A .  = (r: 1-01 = 0 for a,l l  1 E L}; 

it follows imediately that t is  an irieal i n  2. Note also that 



the statement I'M i s  a torsion mdule" does not imply i n  general 

that AL i s  nontrivial, that is, A,-, # 0. (~ounterexample: take 

an M which is  not f ini tely generated.) 

Coupling these notions with the special fact  that, for us, 

R = Szl ,  we get a number of interesting syste-ntttheoretic results: 

(4.29) PROPOSITION. Z - i s  f :nite-dimensional if and only i f  T 
i s  a torsion Uzl-module. 

COROIURY. If $ is free, C i s  infinite dimensional. 

PBOOF. We recall  that  "C = firslte-dimensiodll' i s  defined 

t o  be 5 = finite-dimensional as a K-vector spce". See (1.18). 

Sufficiency. By assumption X i s - f in i t e ly  generated 

by, sqr, q nonzero elements . . . x of (which are not- 
Q 

necessarily the columiis of G) . Hence 

Since Hz]  is  ri principal-i&al domzh, each of the A i s  a princi- 
x 4 

J 

p a  ideal, Says ~ f [ z l  ~ 5 t h  r E a z l .  I f  t is a torsion mdule, 3 
then d e g r  = n  > O  f o r a l l  j=l, .-., Q. Forotherwise r 3 S S 
is either zero (and then x is free, which i s  a contradiction) or 3 
a unit yvhich implies x = 0- contr y t o  assumption. .Hence we can 

j - ,  

replace each expression 
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by the simpler. one 

9 
X = J & 1 [vJ (mod rj)]-x J' 

which shows that  $, as a K-module, i s  generated by the f i n i t e  se t  

Necessity. Let 4fF be the minimal polynomial of the map 

F: x H Z-X. If % i s  finite-dimensions:- as a K-module, deg JrF > 0. 

This means (by the usual definition of the minimrrl polynomial i n  matrix 

theory or more generally i n  l inear  algebra) tha t  tF - annihilates every 

x C % so that YE is 3 torsion IS[ 21-module. 

Notice, from the second half of the proof, that the notion of a 

m i n i m a l  polynomial can be extended from K-linear algebra t o  KEzl-modules. 

In fact, the same argument gives us also the well-known 

(4.30) PROPOSITION. Every f in i te ly  generated torsion module M 

over a principal-ideal domain R has a nontrivial mininiil D ynomia7, 

qM given by % = 

(4.31) COROLLARY. If KK[z]-module X i s  fs'nitely generated with 

q penerators a ~ d  minim~l polynomial qX, then 

'dim X (ss K--rotor s w e )  < - q-deg IX. 

(4.32) FEMARK. The fact  $bat Zf + s completely reachable and i s  

therefore generated.by m vectors allows us t o  estimate the aimension 

of 2, by (4.11) knowing only deg rU but without having com2uted 
xf 



Xf i t s e l f .  ( ~ n o v i n ~  Xf explicit ly means knowing F: x H z.x, etc. f 

I n  other words, the module-theoretic setup considerably enhances the 

content of Proposition (3.16). Guided by these observations, we shal l  

develop i n  Section 8 explicit  slgorithms for calculating dim Lf directly 

fiom f without f i r s t  ha-~ng t o  compute F. 

(4.33) PROPOSITION. i s  a free K[z]-module, no s tate  of 

C can be simultaneously reachable ant5 controllable. 

PROOF. We r e c s l l  tha t  = free" means that % i s  

(isomorphic to)  a f i n i t e  sum of copies of K[z] . Suppose for  

simplicity that % = K[ 21 Then x = reachable means that x = 5 -1 

for some 5 E K[ z] . Similarly, x = controlLFLble means that 

z '"I -r + 0.1 = 0 for  some m E K[ z ]  . Hence i f  x has both properties, 

This shows tha t  1 i s  annihilated by 5&, the input 5 followed 

by cu, which contradicts the assumption that  is  free. 

The most .important consequence of Theorem (4.2) i s  due t o  t.'. . 

fact that through it we can apply t o  i inear dynamical systems the well-known 

(4.34) IilNUWXm STRUCTUW TIYEOREX FOR FINITELY ~~ MODULES 

A PRINCIPh IDEllL  DO^^ R (~nvariant  Factor Tllesrem for Modules). 

Every such moaule M wPkh m generators i s  isomorphic t o  
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where the R / V ~ ~  =re quotient rings of R viewed as modules over R, 

the qi (called the invariant factors of M) are uniquely determined - 
g M up to units in R, qi 1 qiq1? i = 2, . . . , q, and, as usual, R' 

denotes the free R-module with s generators; finally, r + s < m.. - 
Vasious proofs of this theorem are referenced in KAIWU, FALB, 

and ARBIB [1969, page go], and one is given later in Section 6. 

Note: The divisibility conditions imply that M is a torsion 

module iff s = 0 and then $N- - 
One im~ortant consequence of this theorem (others in Section 7) 

is that it gives us the most general situation whet % is not a 

torsion module C. For instance, combining (4.33) with (4.34), we 

(4 -36) PROWITION. d system cannot be simultaneously completely 

reachable and completely controllable if its K[ 21-module -- X has any 

=-dimensional components ( i. e ., s > 0 - in (4.35 j ) . 
(4.37 1 REMARK. Although our entire devel3pment in this section may 

be regarded es a deep examination of Proposition (2.14), most of our 

comments apply equally well to (2.7), since both statements rest on 

the same algebraic condition (2.8). In fact, the only remaiiu 

thing to be lta+lgebraizedw is the wtion of vcontinuous-timew. We 

shall not do this here. Once *is last step is taken, the algebraization 

of the Laplace transform (as related to ordinary linear differential 

equations) w i l l  be complete. 



5 ,  CYCLICITY AND RELATED QUESTIONS 

We r eca l l  that an R-module M (R = arbi t rary ring) is  cyclic 

i ff  there i s  an element m E M such tha t  M = IZm. [ ~ t  would be 
, . 

bet te r  t o  say thz t  such a module is  momgenic; generated by one 

element m.] 

If M i s  cyclic, the map R -, M: r H r-m i s  epimorphism 

and has kernel Am, the annihilzticq ideal of m. This plus the 

homonorphi sm theorem gives the well-.ho-m 

(5 -1) PROPOSITION. Every cyclic R - e  1.1 with g e c e r ~ t ~ r  LO 

i s  isomorphic with the quotient rinq X/A~ vie.vst 9 s  on 2-mdlee. 

This resu l t  i s  much m x =  i -~ teres t ing  'vihen, es  i n  our case, R 

i s  aot  only conmutative and a principal-i8eal domin, but specifically 

the polynomial r ing K[ z 1. 

So l e t  X be a cyclic K[z]-module x t th  ger~erator g and l e t  

A = $ g ~ [  Z] where is the min-1 or snnihilatinp, polynomial of 
g . g 

g. By c o m t a t i v i t y  and cyclicity, A = 5. Hence Y i s  a minimkl 
g g 

polynomial a l so  for  X. Write $ = riiX = q. I n  view of (5.l)# 
g 

v x[z]/$K[ el .  Let us recal l  sone features of tihe ring K[ z]/.t'i([ z] : 

(i) I t s  elements are  the residue cins:es of polyno~dals u (mod o) ,  

n E ~ [ z ]  . Write these as  [rr] or [T I * .  Mult ip l ice t i~n  is d e f i e d  as 

[a]-[u]  = fml. 

(ii) Each [ a ]  i s  either a or e divisor of zero. In  Sect, 
r 
I [a] i s  a unit  i f f  (n; 9 )  = greatest 'cw.%n divisor of 71; r/r i s  a 
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unft i n  ~ [ z ]  ( that  is, (n, 9 )  € K) . Then 

so that  [oj i s  the inverse of [TI. On the other hand, i f  

(n, JI) = C f unit i n  K[z], then both :?TI and [q/Q] are  zero 

divisors since [n].[JI/@] = [(T/Q)JI] = 0. 

( f i i )  I f  JI i s  a prime i n  K l  z] (that'  is, an irreducible poly- 

nomial with respect t o  cof:fficients over the ground f i e l d  K), then 

by ( l i )  K[z]/JIK[z] i s  a field.  This i s  a very standard construction 

i n  algebraic number theory. 

Since it i s  awkward t o  cornpute with equivalence classes [TI, we 

shall often prefer t o  wcrk k i th  the siandard representative of [n], 

namely a pobnomial % of leas t  Zegr~e  i n  [n]. 5 i s  uniquely deter- 

&.zd by [TI &d the condition deg ? < deg q. Heaceforth * dll 

always be used i n  this sense. 

The next two assertions are  immzdiate: 

( 5  -2) PROPOSITTQN. K[ z ]/VICE z]  - as a !;-vector space i s  isomorvhic 

t o  the I(-vector spece = ( x  € K[z]: deg Z C n =. Ecg W J .  
. . 

K[z]/JIK[z] i s  also isomorphic t o  @(n) - as  a K[z]-module, .-provided 

hC we define the scalar product i n  @ln) (riel) it nj . 
. ( 5 4  PROPOSITION. - If 3 j ,s  cyclic with minimal po-c)mial $, 

then dim C = deg v. - 



I&khg back at Theorem (4.36), we see that  the most general 

a d - w e  is a direct sum of cyclic Uzl-modules. By combining 

(5.3) and (4.34) and using the fact that dimension i s  addifive under 

direct summing, we can replace (k31) by the follow-. exact result: 
..- . 

(5-4) PROPOSITION. If 5 i s  a torsion rnodsle w i t h  invariant 

factors $lJ .. ., f then 
9 -  

dimC = deg $l + ... + d.eg *q. 

A siruple but 'LZgkly u s e m  consequence of cyclicity i s  the 

so-called control can~nical  form I-, FAI;B, slid ARBIBj 1969, 

page 441 f ~ r  a completely reachable pair (F, g) where g i s  an 

tr X 1 mtrix. We shall now prpcee&'to deduce th i s  result. . . 

Clbserve f i r s t  that "(F, g) coiiletely reachable1' is equiva- 

lent t o  Ifg generates XpJ the module induced by F via (4.13) . I t  Let 

then i s  the characteristic ( a d  also the) minimal polynomial for 

$. [This i s  a well -lm.!om~. fact of module theory. See for e x q l e  

mJ FALB, and L I B  [196gJ Chapter 10, Section 71 for detailed 

discussion. 1 As. in KALMAN 119621, consider the vectors 
* 



e = g =  l o g =  
n $)(z) -g, 

i: (2) 
=n-1 = 2-g + q - g  = t.z)-g, 

(5.5) 

(n) e = zn-1.g+4Zn-2.g+ ... = (z1-e 
1 

in 5. [Fez cansiskacy, (-1) b) = s(3.1 mese vectors are 

easily seen to  be linearly independent over K. They generate 

since 5 =dn) a v e  s e  o i t i  (2)) - Hence  

el, - - - 9  en are a basis f x  5 as a K-vector space. With 

respect to this basis, the K--msm 

is  represented b y e s  matrix  

[This is proved by direct computation. In paxticulsr, it i s  

necessary to use the fact that 
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Note that the last row of F in (5 -6) consists of the coefficients 

f . By definition, g = e Xeience g as a column vector in n ' 

has the representatioq 

Conversely, suppose @, have the matrix representation (5.6-7) 

with respect to some basis in I?. Then (by direct computation) 

the rank condition (2.8) is satisfied and therefore (F, g) is 

campletely reachable in both the continuouc-time snd discrete- 

time cases (Proposikions (2.7) and (2.16)). 

We have nos proved: 

(5 08) PROPOSITION. The pair (F, g) is completely reachable 

if and orly if there is a ksis relative to which F is given by 

(5.6)s g (5.7). 

(5.9) C m 0 W Y .  Given an ar3itraq n-th degree polyriamial 
n 

h(z) = z + B1z . 
n-1 + . L + B, - in lS[ [a], K = arbitrary field. - There 

exists an n-vector I such %at h = s-gg if - and only if the 
r (F, g) is completely reacha'ole. 
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PBOOF. Suppose that (F, g) i s  completely reachable. 

With respect t o  the same basis (5.5) which exhibits the canonical 

forms (5.6-7), defiae 

men verify by direct camputation that h = s-gJ,. 
Canirersely, suppose that (F, g) is not completely 

reachable. Then, recalling Proposition (2.12) (which is an 

algebrdc eollseqpence of (2.8) and hence equally vslid for both 

continuous-time and discrete-time), dim X2 > 0 and so is also 

deg 5 . Since X1 f s an F-inmiant  subspace of X = I!?, 
22 

the polynsmial is independent o f t h e  cho ic~  of basis i n  
-I 1 
II 

I? and the same is true then also for s 22 = Y?Fu- (= 

pa~ticular,  "., does not depend on the a ~ b i t r a r y  choice of 

X;, in  s a t i s m  the condition X = ILL @ 3.) In view of (2.12), 

we have for a l l  . n-vectors 1, 

This contradicts the claim that h = $-gl, is true for any A 

with suitable choice of 1. 0 

In view of the importance of this l a s t  result, we shall 

rephrsse it ir. purely module fieoretic terms: 
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(5.~) !DEDFGH. - Let K be an arbitrary f ie ld  and X a cyclic 

K(z]-module with generator g an6 minimal polynomial X of degree 

n. There i s  a bijection between n-th degree polynomials 

n 
A(z) = 2 + p z 

n-1 + 

1 
... + B, K[z] - and K-3omom0rphisms 

1: IP -, e: ~ ( j ) - ~ u  1.-g (j = 1, ..., n 9 x (j) defiaed 
3 

as i n  (5.5)) such that A i s  the minim1 polynomial ?or the - 
new module structure induced on X by the map z,: x I+ z-x - f?(x)  . 

Note that in (5. El) l(x) corresponds t o  gf? Ix  in (5.10). 

The nap I in (5 .Kt.) defines a control law for the system 

C = (I?, g, -) corresponding t o  the module X. The passage from 

z t o  z, is the module-theoretic form of the well-known open-loop 

to closea-loop transformation used in  classical linear control theory. 

PROOF. Since the vectozs x . x form a 

basis for e, 5 is  clearly a well-defined K-hamomorphiam. We 

t rea t  1 formaUy as an element of ~ i z ]  (that is, an operator 

on X i s  a K-vector space), by writing 1.x = 3(Ewg), where 

% represents the equivalence class [ 5 1 = ( 5: 5 g = x) . Unless 
identically zero, f! i s  never a a 21-hnmnmnrphism and therefore 

4 does not commute with nonunits i n  ~ [ z ] .  

Define f? J = B J - a  
J' 

j = 1 . . We prove f i r s t  

(3)  that th is  choice of . i implies h ( a  - k?) = x ( ' ) ( z )  for  

j = 1 . . , n + 1. Use induction on 3. By definition, 

A 
- 

( a  - ) = x (z) . ;In the general case, 
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(3) = [(z - l ) x  (2) -I- Bjleg (inductive hypothesis) , 
; [a(J) iz)  + B~ - l .1-g  (def. of a) ,  

J 
; [ z ~ ( j ) ( z )  + a.1.g (def. of a .), 

J J 

- - x(~+l ) (z )og  (aef. of ~ ( 3 ~ ) )  

It follows (case j = n + 1) that A annihilates X 

regarded as a K[ z*] -module. On the other hand, the 

(1) ( 2 )  . , A (n) (2,) *g is a basis for X as a K-vector 

- (z! -g was such a b s i s .  SO x space since x(')(z) -g . . -, 
f s cyclf c with generator g slso as a K[ z, 1 -moduie. Hence 

C;i Fxgositions (5-1-2) the amihilatiq ideal of g' with respec:t 

t o  the K[z,]-msdule structure cannot be generated by a polynwial 

of degree less than n, that is, h i s  indeeB the minimal poly- 

nomial with respect t o  2,. B e  correspondence A t, J is  obviously 

bijective, 0 

The proof ixnediateLv implies the following 

- 
(5 .El) COROLLARY. Let x = g -g be any element of X viewed 

7 - 
as s K[z] -module. Then x has the repr5sentation S,*g with - -- 7 _e 

respect t o  the K[q]-module structure on X, where 5 and 5, - 
are related as 
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So the open-loop/closed-loop transformation is essentially a 

change in the canonical basis, provided X is cyclic. 

It is interestir;g that the x(') have long been knom in 

Algebra (they are related to the Tschirnhausen transformation 

discussed extensively by WEBER [1898, $46, 54, 74, 85, 961), but their 

present (very natural) use in module theory seems to be new. 

dal case *Theorem' ( 5 . ~ )  hay be viewed as the central spe- 
- - 

of Theorem A of the Introduction. Let us restate the latter in 

precise form as follows: 

(5.l.3) THEOFWZ. Given an arbitrary n-th degree polynomial 

n h(z) = z + plzn-l + . . . + f3, & K[ z 1, K = arbitrary fiela. 

There exists an n X m  matrix L over K such that s-GL, = h 

if and only if (F, G) - is cor~letely reachable. 

For same the, this result had the stat;- of a well-known folk theorem, 

considered to be a straightforward consequence of (5.9). The latter 

has been discovered indepelldently by many people. (-I first heerd 

of it in 1958, proposed as a conjecture by J. E. Bertrar; and proved 

soon afterwards by the so-called root-locus method.) InGstG, the 

passage from (5.11) to (5.1,7) is primarily a tzchniczl problem. A 

proof of (5 -13) was given by L A I i I O P  [1$4] md su5seqaerrtly 

simplified by K O m - 1  [1967]. Tne first proof was 

very long, but the second proof is also unsatisfactory; since 

it-depends on arguments using a splitting field of K 

--------------- 
*The material between these marks was aeded after the Surpmer 

School. 
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and fail when K is a finite field. We shall use this situation 

as an excuse to illustrate the power of the module-theoretic 

approach and to give a proof of (5 -13) valid for arbitrary fields. 

The procedure of LANGENKOP asdlIQNHAM zests on %he following 

fact, of which we give a module-theoretic .proof: 

(5.14) LEMMA. && K be an arbitrary but infinite field. &t& 

F be cyclic* and (I?, G) completely reachable. Then there is 

an m-vector a E I? such that (F, ~ a )  is also coz~letely - - 
reachable, 

We begin with a simple remark, which is also useful in 

reducing the proof of (5.13) to Lemma (5.18). 

(5.15) SUBUMMA. Every submodule of a cyclic module over a 

principal-ideal domain is cyclic. 

PROOF OF (5.14). We use induction on m. The case 

n = 1 is trivial. The general case amounts to the following. 

Consider the submodule Y of X = 5 generated by the columns 
8p * J  G,l of G. In view of (5.15), Y is cyclic. By the 

inductive hypothesis, we are given the existence of a cyclic 

generator of Y of the form 5 7 4 g l +  - *  + am-l*q-l> ai E'K. 

We must prove: for suitable (2, @ E K the vector a-gy + pee, 

is a cyclic generator for X. 

*Of course, I3h.s means that the K[z]-module $ (see (4.13)) 
is cyclic. 



By hypothesis, X has an (abstract) cyclic generator 

%. By cyclicity ue have the representations 

Hence our problem is reduced to proving the following: for suitable 

a, p E K the polynomisl q + & is a unit in K[Z~/$K[Z]. This, 

in turn, is equivalent to proving 

where QlY . . . , % in K[Z] are the unique prime factors of 

5. Let " mean the reprasentative of least degree of equivalence 

classes mod Qi. Then no pair ( ) i = 1 . . . r can be 

zero. For if one is, then oil (s, q, p), that is, y Q i  annihilates 

the submodule XI = K[z]gy + K[Z]Q whence XI is a proper sub- 

module of X, contradicting the fact that (F, G) is completely 
.II 

reachable. If all the Pi are zero, then every '4 # 01 SO 9 

is a unit in K[ z]/]l~[ z], and gy is already a cyclic generator. 

... 
So let a = 1. Then the condition \ + bi = G eliminates at most 

r values of 6 from consideration. Since K is Infinite by 
> 

hypothesis, there are always some g which satisfy (5.16). o 

Anessential part of the lemma is the stipulation that a E K?. 

The hypothesis "F = cyclic + (F, G) = completely reachable" means that 
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that is, the lens is tfivi8Uy true for some a E $[z] since 

g~ = Ga. But since we want a E K, -there must be interaction 

between vector-space structure and module structure, and for this 

reason the lemma is nontrivial. 'As a'matter of-fict, th= lenms is fdse 

when K = finite field. The simplest counterexanple is provided 

when (5.12) rules out a single nonzero value of g, thereby ruling 

out all p. - 
(5.1) C-E-LE. Let K = g22, - - that is, the ring of 

integers modulo the prime ideal 22.' Consider - 

Notice &at Xp = 5 (3 X2 @ X (as 8 K[ z]-module), where the 
3 

minimal polynomials of the direct summnds are 

A l l  these factors are relatively prime, ( 5  XP 5) = 1, hence 

X is cyclic. ,Votice slso that gl generates XI @ X while g2 
3 

generates X @ X A cyclic generator f ~ r  X is 
2 3- 
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A simple calculatiori gives 

Conditions (5 -16) are here 

a-i + p0o # o (ma %), 
a-0 + 6-1 # 3 (mod x ~ ) ,  

These conditions have no solution in gg. - - 
At this point, the followi~g is the situation concerning 

Theorem (5. U) : 

(1) Its cowiterpart, Theorem A of the Introduction, was 

claimed to be true i3 the continuous-time case under the hypc'.lesis 

of complete controllability. 

(2) In the discrete-time case (5.13) with the preceding 

hypothesis Theorem A is false, because-of the counterexample: the pair 

(3 = n5lpotent, G = 0:) is completely controllable, but evidently 

S-GL~ is independent of L. Kowever, in view of (5.11) , .Theorem 
(5.13) might be true also in the discrete-time case if "cmglete 

controllability1 is replaced by Itcanplete reacha,bilLtytt, this modi- 

fidtion being tmterial in the continucius-time case. 

(3) Fkcause of (5.17), we might expect that a theorem like (5 -13) 

is false for an arbitrary field K. 



( k )  I f  our generdl claim that reachability properties are 

reflected i n  module-tkcoretic propertizs is true, then (5.13) 

skould hol6 vi-khuut assmptions concerninq Kj kcause the principal - 
module-theoretrc fact, tkat IC[z] = pl incipal ideal domain, is 

indewe l l t  of the specific choice of K. 

We nov proceed t o  establjsh !%ec.rem (5.13). That is, special 

~ v p ~ t h e s e s  on K w i l l  turn out t o  be irrelevant. 

EmF C2 [5.l3). Necessity is proved ewctly as in (5.8). 

Sufficiencx wil; +'32lo'r~ &y induction on m, once we hzve mved it 

in the special c2se rn = 2: 

IBZJA. -Let Ii be m. arbitrary f ie ld  l e t  X be a - - 

(of the t p  defined i? (5.111 such tbzt if z, = z - I induces a 

a;lz,l-n~dule structure on X - then X i s  cyclic wj..tfr respect t o  th i s  

stficture er,d i s  ge~srated by either % + g2 or 5. 

mr'. let Y = lt[z]g, and Z = a z l ~ .  - 

CaseI. Y ~ z = O ,  Wtis, X = Y @ Z .  I n ( 5 . u )  -- 
. . 

take an I such Wt J(x) = 0 -for all x f 2. Replacing z by 

z, = z - I w i l l  change the Hz]-module structure on Y bat pre- 

serve that on Z. Further, choose I so that the new minimal poly- 

nomial h on Y is prime to the urchmged m i n i m a l  p o w a l  5 = X 
z .  

on Z. Thus there exist polynmWss V, a such that vh + oX = 1. 

BJ hypotI:esis, every x E X bas "be representation 



Nov veriiy that 

E s c e  gT .L t. is. in-1eed c cyclik - ge~:eratoz f94 X a s a  
.L -2 

. = z* ] -md*de. 

there is e 5 i I(I z: such thet w = E m %  end thereiors, by 

cyA.2city of Y, there is also a q E I([z] such that E-g2 = w = 

Take SZZE w # 0. Then if q = writ (mad X;) we are done because 
- - r, 'E-+ gemistes Y, and so Z = X. 51 the nontr5viol case, 

q # unit (nod )k). TO show: there i s  a suik2ble neu module structure 

on X sich t'nat & = M t  (mod X,), X* being the ~&inai pa%-- 

nmial  of X as a -IC[ z, ] -module. 

The =in facts we need are the fcllcwi.iug: . 

. - 
(5.19; . m  - Let X be a fixed clenent of a(jz] :%tt:h 

deg X = g Fx -- the c o ~ p n i m  ~ s t r i x  of X given bE (5.6), . "., : 
tkce cyclic rm6uIe induced by Fp + g a y c l f c  gemrator 02' 

. . 
7'-  . Then rl € ~ [ z ]  i s  c" *mit reod11Lo X if ail& c-dy if -g f s % - - . . . - 

also a cyclic gmerator of .- 
'X 

PROOF .. Obvious. 
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(5.20) SUBTB.P.iA. .; Same natations as i n  (5.19). Write - 

Then 2 s  a mit KG~JU~S X i f  and only i f  - - 

(5.21) det (y, F'$, ..., ql:-s) 0, 

where g is the colmm vector - 

(1) . S b c e  X , ...> x("' is the basis for ttr 

K-vector space of 8U p'jSq7-t'daJs of degree < T;, the n-tuple 

(ql, . - ., 7 ) is Ujiqyely deteAWed by g. By defkition FX In 

is the mtris represe~tirg the miMu2.e operator z: x e z-x relakive 

to the special basis el, 
. . . , e n in given by ( 5  -5) .  Simi%Lrly, 

using one of the n : d a e  ~Aons, vs. verifE- th&t 

ir other words: the : nmerical uecto-8- is. 22) represents the abstract 

vector 6 ' ~  in rel&tive to t2ie sane basis el, . . ., e 
. - 

. . n' Xect~11 

. - \ .  



that ? w g  generates X, iff (F,,, ? j ( ~ ~ ) g )  is  conplete reachable. 
'X 

By (2.7) the l a t t e r  condition is eqd.valefit t o  ((5.21). The rest  

f'ol-hws fron (5.15). [3 

(5 -23) S-CJQ. Sme r.ot&tions as ir. (5 .s) (5.20). Given 

any nonzero nmerical n-vector (5.22), there exists a polynomial X 

such t h ~ t  ( 5  .a) is sat5sf ied. 

PROOF. Let qr be the first nember of the sequence of 

- nmbers ql, q2, . - . which is nonzero. Write 

an& determine %e first r coefficien+,s of X 'by the rule 

(Giace all nmbers belong t o  a fiel6, tke reqdred values of 

ar, -*- ,  an eidst .) Now check, by congutation, t'nrt th2se con5itiom 

redux the mtrix i n  (5.21) t o  the direct sum of two trianplzr 

matrices, each with mazero elements on i t s  diagonal. 

In view of (5.12), it follows from these facts t h ~ t  xe can 

alws choose a new -Xy = Xt such that % = unit mad X+. 
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The proof of Case 2 i s  n ~ t  yet cozpiete, however, beczuse 

we must still extend th2 az,l-m5ule structure from Y t o  X. ThZs 

i s  easy. Write first Z = W 6, 2' znd then X = Y @ z', where the 

direct sum is  noii with respect t o  =e K-mciule structure of X. E x t e a  

-- j frca .ir t o  x par s%ttir,s &i Z t  = O. ~;ow we ht7e .Z 3 . ;~  ni-1 

p0lynaolra.l defined over X Since z, = zi on Y, 5 = \ By 

(5.12), 6 is replaced by s- 6 such tkat 

that is, our previuas re2reseatation of w 0 i n  GI induces a 

sinilw representation with respect t o  the nev K[z,]-&de structuze 

on XI Since rl, i s  a unit owiiulo Xi, we can write 

% = 1 + T X ~ ,  with O, r E K[z*]- 

By (5.24), we bve,  with respect t o  the K[z,]-structrrre, 

This' proves thzt % generates both Y and 2; tiat is, g, is 

a c;yclic generator for  X endoxed kith the -1-structure. The 

proof of (5.18)- I s  now complete. . 



It should be clear that Theorem (5.13) i s  not a purely modde- 

theoretic result, but depends on the interplay between module theory, 

vzctor-spaces, and elimination theory (via (5.21)) . For instance, 

the fact that l? c m  be extended from Y t o  X, which was needed 

i n  the proof of Case 2, is a typical vector-space argument.* 

There are many ope8 (or forgctten) results concerning cyclic 

modules which are of interest i n  system theory. For instance, it 

is  easy t o  show that an n X n real  matrix is  cyclic i f f  a certain 

polynomial Y E g[zl, . . ., z ] is nonzero at F; the polynomial - n2 

Y is roughly aniLlogous t o  the p o l y n d a l  det i n  the same .ring, 

but, un l i ke  in  the b t t e r  case, the general- form of Y does not seem 

t o  be known. 

We must not terminate this discission without pointing out 

another consequeace of cyclicity which trmscends the module frame- 

work. Since X = cyclic with generator g i s  isomorphic with 

~[z]/XgK[z], it is clear that 7; alro has the structure of th i s  

conmutative ring, that is, the product i s  defined as 

I f  X = irreducible, then X is  even a field. Hence, i n  particular, 
g 

X has a galois group. 1Jo one has ever given a dpamical interpreta- 

tion of th is  galois grou?. In other words, there are obvious algebraic 

facts i n  the theory of dyrmical systems which have never been examined 

from the dynamical point of view. For same related comments in  the 

setting of topological semigroups, see DAY an6 W U C E  [1967]. 
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6. TRANSFER FUNCTIONS 

(6.0) PREZil4ELZ. There has been a vigorous t radi t ion i n  engineer- 

ing (especially i n  e lec t r ica l  engineering i n  the United States during 

1940-1960) that  seeks t o  phrase a l l  resul ts  of %he theory of l inear  

constant meal systems i n  the langpuage of the Laplace transform. 

Textbooks i n  t h i s  area orten t r y  t o  motivate the i r  biased point of 

view by claimix?g that "t'ae Laplace transform reduces the analytical 

problem of solving a d i f fe rent ia l  equation t o  an algebraic problem". 

When directed t o  a mthematicizn, such claims are  highly misleading 

because the lcathematical ideas of the Laplace transform are  never i n  

fac t  used. The ideas which - are actuclly used belong t o  classical  

complex fmctlon theory: properties of rational fbnctions, the 

partial-fraction expansion, residue calculus, e tc  . More importantly, 

the word "algebraic" i s  used i n  engineering i n  an archaic sense and 

the actual (modern) algebraic content of engineering education and 

practice as relsted t o  l inear  systems i S  very nieager. For exGple, 

the crucial  concept of the transfer function i s  usually introduced 

via heuristic arguerits based on l inear i ty  or "defined" purely formally 

as "the r a t io  of Laplace tr=sforms of the output over the inputtt. To 

do the job right, and t o  recognize the transfer function as  a natural 

and purely.algebraic gadget, requires a Grastically new point of view, 

which i s  now a t  hand a s  the machinery se t  up in Sections 3-5. The 

essential  idea of our present treatment was first  9ublished i n  

mmi Ilg65bl. 
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The first gqose of this sectlon is to give an intrinsically 

algebraic definition of the transfer fbnction associated with a 

discrete-time, constant, linear input/output map (see Definition (3.10)). 

Since the applications of transfer functions are standard, we shall not 

develop them in detail, but we do want to emphasize their role in relat- 

ing the classical invariant factor theorem for polynomial matrices to 

the corresponding module theorem (4.34) . 
Consider an arbitrary K[ z]-homomorphism f: R + I' (see lemma 

(g) following Theorem (4.2)) . Then as a lfmathematical object" f is 
equivalent to the set E f(e ), i = 1, . . . m e defined by (4.6)), 

5 5 
since 

 h he scalar product on the right is that in the K[ 21-module , as 

defined in Section 4.) By definition of I', each f(e ) is a 'ford 
5 

power series in z-' with vanishing fir-& term. We shall try to 

represent these formal power series by ratios of polynomials (which 

we shall call transfer functionsx.) and t3en we can replace formula (6.1) 
- 

by a certain specially defined product of a ratio of polynomials by a 

polynomial. Some algebraic sophistication will be needed to find the 

correct rules of calculations. These llruleslf will consititute a 

rigoroos (and simple) version of Heavisiders so-called wcalculuslf. 

There are no conceptual complications of any sort.  o ow ever, we are 
dodging some difficulties by working solely in discrete-time . ) 

*This entrenched terminology is rather unenlightening in the present 
algebraic context. 
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Let Xf = Wkernel f be the s ta te  se t  of f regarded as  

a K[z]-mo~l.il.e. We assume tha t  Xf i s  a torsion module with nontrivial 

minimal yolynomial Jr.  Then, for  each j = 1, . . ., m we have 

By definition of the module structure on r, (6.2) means tha t  the 

ordinary prodilct of the power ser ies  f (e  .) by the polynomial Q i s  J 

a (vector) polynomial. ~ e n c e  (6.2) i s  equivalent t o  (n~ ta t ion :  

no dot = ordinary 

IntuLtively, we can solve this equztion br writing f (e .) = 8 ./Q. --- --.- J J 
There are  two w a p  of making t h i s  idea rigorous. 

Method 1. Define 

-1 as the formal division of Q by $ i n t ~  ascending powers of z . 
3 

Check that  the coefficient of z0 i s  always 0. Verif'y by computation 

that  the power ser ies  so obtained sa t i s f ies  (6.21). 

Method 2, Multiply both sides of (6.21) by z '~ .  Write 

( z )  = ( z )  and ;jj(z-') = ;%(z). Then 3 E ~ [ z - l ]  C K[[ z'l] I 

and (6.21) becmes 

Moreover, the O-th caefficient of $ i s  1 (because of the convention 
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that  the leading coefficient of v i s  1)) hence $ 1s unit i n  

K[ [z'll] and therefore 

Note that  (6.3) and (6.3 ' ) actu.ally give s l ight ly  different defini- 

t ions of f(e.) ,  depending on whether we use a transfer function with 
J 

-1 respect t o  the variable z or  z , ( ~ 0 t h  notations have been used 

in the engineering l i terature .  : For us the formalism of Method 1 is- 

preferable, (The calculations of Method 1 c m  be redxed by Method 2 

t o  the better-known calculations of the inverse in the ring K[ 1 .) 

Sumrriarizing, we have the easy but fundamental result: 

(6.4) EXISTENCE OF TRPJXSFER FUNCTIONS. There i s  a bijective 

correspondence betveen K[ z ] -homomorphisr;_s f: R -, I? with minimal 

polynomial lr and transfer function matrices of the type 

where 8 .  E xp[z], 2% 8. < iieieg*, and t i s  the leas t  common 
J J .  - 

denominator of Z. 

I n  many contexts, it i s  preferable t o  deal with the Z corres- 
f 

ponding t o  f rather than with f i t s e l f .  Because the corresrondence 

is  bijective, it i s  clear tha t  a l l  objects induced by f are  well- 

defined also for Z a.nd conversely. Thus, for  ?.ns+.ance, 
f 

A A dimz, = d i m f  = d i m  Xp; 

$z = ieast  cammon denominator of Z, 

= minimal polyllomi.al of fZ. 



(6.5) HEMARK. I n  view of Propositions (4.20-21), the natural 

A 
r .~- l izat ion of 2, namely XZ = * z 

, i s  completely reachable as 

well as  completely ~bservable. ~ o t  having this fact  available before .',961, 

has caused 3 great conf'usiozae Questions such as thostresolved by Theorem (5.13) 

tended t o  be attacked algorithmically, using specie1 t r icks  amounting 

t o  elementary aJgebraic manipulations of elements of Z. Very few 

theoretical resul ts  could be conclusively established by this route 

u n t i l  the conceptual foundations of the theory of reachability and 

observability were developed. 

The preceding resul ts  may be restated as "rulesv whereby the 

values of f be computed using Z. We Mve i n  fact, f(w) = Z-o, where 

(6.6) z*m ( Z ) / q ,  

= multiply the polynomial matrix $Z consisting of 
. the numerators of Z with cu, reduce t o  rrinimal- 

degree polynomials modulo 9 and then divide 
formally by $ as i n  Method 1 above. 

We can a,lso compute the ent i re  output of the system XZ ( that  is, 

all output values folloving the application of the f i r s t  nonzero input 

value? by the ru le  
. . 

= sane as above, but do not reduce modulo 9. 

I n  this second case, the output sequence w i l l  begiu with a posit ive 

power of z. (l7.e coefficients of the positive powers of z . are  

thrown away in the definit ion of f (see (3.7)) i n  the definit ion 
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of the scalar product i n  I', i n  order t o  secure e simple formula 

for Xf = ~ / h e r n e l  f . )  

Many other applications of transfer functio~ls may be found i n  

KAUGW, FALB, and ARBIB 11969, Chapter 10, Section 101. 

It i s  easy t o  show that  the transfer f'unction associated x i th  

the system Zf = (F, G, H) i s  given (3Y Z = H(ZI - F ) - ~ ~ .   hi^ is  
f 

just  the form1 LapIace transform computed from the constsfit version 

of (1.12) by sett ing z - d/dt or from (1.17) by sett ing 

x ( t  + 1)  = zx(t)  .) Yr.obab1.y the simplest way oi compdLng Z i s  

v ia  the formula 

where i s  the minimal polynomial of the matrix F and the super- 

script denotes the special polynomials defined f n (5 .5 )  . The m t r i x  

ident i ty  (6.8) follows a t  once from the classical  scalar identity 

upon sett ing w = F, a = J~F, and iilvoking the Cayley-Hamilton theorem. 

Much of c lassical  l inear system theory was concerned with computing 

zf- 
In the modern context, t h i s  problzm llfactorsv into f i r s t  solving 

the realization problem f + Zf ard then applying formula (6.83. see 

Sections 8 and 9. 

One of the mysterious features of Rule (6.A) (as contrasted with 

the conventional rule. (6.7)) is the necessity of reducing modulo @. 

l'he simplest way of understanding the importance of t h i s  



aspect of the prob la  is  to sbow how tO rek%e t t ig  r?cdae i_n_m.rat 

factors occurb! h the structure thtorez ( 4 . 3 )  to  the clcssiczl 

facts comerring the ir,v"criar.t fictors or" a polyllozi21 si,rir. 

(5.9) E L  ' I  3 F K C  - t P - be z I! X n 

mtrix with eleU&nts in ar- zrbitrary ~rlnctsal-lder,l do=in R >  - Then 

a r e  A a ~ d  B are p X p z X EL zatr%ces (not necesssrily - - -- 
\mique) ~ 5 t h  tlezezts In R azd dei, A, 6et B wdts in  3, p-hile  - 

is  unique (E? to units in B) - hit3 \I hi+lJ 2 =  lJ .*., q - lJ s 
9 = ra,& P. - Tke \ are czued the i n -a~ iz , r t  f+ctors af P. 

&, in particular, -bet.ioen the respective ic-rdi&?t fzctors +:, . . .: . 
-.- - ' r 

and \, . .., hq. let us zketch t?re s-Aerd grcoT  of ZSia fact follw- 

ing mIS and REDER 11962, 513.33 zho C s o  give P, prmf r~f  (5.9). 

PROOF OF (1;. 34). Consider the R-Lammxyhiszi fr3a fin 

onto M give2 by p: e. L, g., where -i;%e. e eze *e ska&rd 
1 1 i 

basis elementn of (recall (4.6)) pad the gi gener2.t.s I. 

ClearlyJ H X where N = kernel p. It can he prove2 that 

II %R' is  a free subcdule of  Rm, w i t h  a besis cf at mst l j n - 
elments. Write each basis e l a e n t  f of & es p5 ?ij E R. 

j - 



" r -1 
Apply is.?) to S-?i: C - ~ t r i x  P. ,"T-Ln@ r" = LI c.. sf., i: = B , 

j r j  r - .  
A a = C  A 

% -5.-. Q (6. J.Q.-LI), fk = ?i-ci. &sce 
.j .- . . . 

%zt is, (4.34) h01k kith $: = hi and r = rank P = E. 
a. 

I$ the size f y p  of cz3-c-alatiozs, we ccn prove also 

(6.12) EEGI!=Z. , . , A be the ir~variaat factars of 
9 

I given 3~ (6.9), _as 15% $1 = G ~ ,  i = 1, . .., q. men the 
A 

in=riaet.. T G I S ~ C ~ S  ef % arc 

where r 5s %IE ssillest -2nteger sucF- t& +jh, for. - 
.i 

Clearly, a E [0Iz = kernel. g iff Z*m = 9 (see . (6.6)). ~ ~ u i k e n t l y ,  

( = 0 ( $1. Vsing the representa%ion whose existence is claimed 



bx (6.9), write $Z = ~m (c, 4 D = natrices over Hz!.) ik fke  

V = D'-\ where 

Tken = 0, ( ~ z ) w  = 0, and W has clearly mxird. ~ 0 %  K [ ~ ] -  

matrices with th is  groperty. So the colmins of the ' b r i x  W consti- 

tute a besis f ~ r  kercel p. The rest  follows easi?y, as in the proof 

of (4.34). 0 

(6.13) FE249RIi. The preceding proof remains correct, kcithout bny 

modification, i f  the representatior, $Z = CADJ det C, det D = units 

5s taken in  the ring K[z]/$K[z], rather thaa  in ~ i z ] .  The former 

representation follows t r iv ia l ly  from the l a t t e r  but q be easier t o  

compute. 

(6.14) FEbLUK. Theoran (6.12) shows how t o  com~ute the invarfaat 

factors of 212 from those of $Z. W e  must define the ia.variz;lt 

factors of Z t 9  be .;he - same as those of XZ (because of ihe 

bijective corrzsponi!ence Z e, %). Consistency with (6.12) denan* 

t%t we m i t e  - 

where / i s  defined as i n  (6 .3 ) .  In  other words, qi 

the denominators of tlie scalar transfer function A I -.- afker cancellztion 

of ali -omon factors. 

Theorems (4.31:-) and (6.12) do not ~Zzlly reveal the significance 

of invariant factors in  dynamical systems. l o r  i s  it conveniezf, t o  

deduce sll. properties of ~ratrix-in-ariznt fac-bor s f ran-'the represenhtion 
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theorem (6.9). It is interesting tkt the s b ~ p e n e d  results we present 

bolow w e  nu& i n  t'se s p i r i t  of the original work of ~ ' r r n ~ ~ S ,  H. J. S, 

S?.LITH, EEROIECKER, F R O B i I U S ,  an2  i-EZSE.L, a s  summized in the well-known 

monograph of ~~~H [ 1899 1. 

(6.16) I)EFII?ITIOZ. A, B recta.=-mar matrices over a fact- 

orizzt;ion do~r, in  R. AlB (read: A divides 33) i f f  there are mztrices 

V, W (ov$r R, of appro~r ia te  sizes) such that  B = VAW. 

This i s  of course just the us& definition of "dividen in a ring, 

specizlizedto the noncomi).tztive r i r g  of =trices. 

The follo-sing res-fit [bD!?II 1899, Tieorem IIIa-b, p. 521 shows 

t h a t  i n  cese of principzl-iCizal the corresp1111elice between 

m%r%ces zr-d their invarizfit factors preserves the divide relation 

( i s  wl~uctcr ia l ' '  with respect t o  "di~ide") : 

(6.17) w .  Let  B be 8 p r b e i p l - i d e a l  domzin. Then A! B - 
if azd n31y i f  A. (A)/ A; (3) fcr 211 .i. 

1 6 

EECaF. BMficiezcy. Write %he re2resectation (6.10) as 

A1, B = v W .  A = V  W 
2% 2 

By hypotnesls, there i s  a % (diagonal) such thrt  = 4. Eence 

B = v2fyyr2, 

= 

= ( ~ , v i l ) k ( l i ~ ~ ~ ~ I ? ~ ) .  A 
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Necessity. 'k;s i s  jmt the followi% 

(6.18) m .  For an arbitrary x~~oue- fzc tor iz~ t ion  

domain R, A!B implies hi@)! hi(3) . 

(1899, meorem n, p. 16-17]. o 

l ~ s  cm. le tes  the proof of Theoren (6.i~) u 

(6.19) RBABK. Since (6.9) does not z=,g~y (w>y?) t o  unique facto?i- 

zatiorz donzins, for purposes of uskg ( 6 .  u) we need k=ELmTRd-%I s 

definition of invariznt factors: if  A.(A) = greatest c-n factor of 
3 

a l l  j X j minors of a natrix A, ~5th - I~(A)  = 1, then 

h (A) = A~(A) /A~-~ (A) .  O f  course, th i s  definition c a  be shorn t o  be 
1 

e q u i u e n t  (over g~inci-g&-idea dmzill-~) to tht hqlied ty (6.9). 

In analogy k i t h  Definition ( 6 . ~ 6 ) ~  l e t  us %Tee (nete hnversioot ) 02 
. - 

(6.20) DEET.IllT!IOl?. - Let Z1, Z2 be trensfer-function nztrlces 
-L 

read: Z1 divides Z ) iff there are  =trices V, Y over ~ [ z ]  ZliZ, (- 2 - 
such that  Z1 = E 2 W .  ( ~ o t e  that ZII Z2 implies at  ome: I b .) 

z2 

(6-2L) . 41 Z2 if and only if  $i(~l) I qi(z2) for all i. 

PROOF. This is the naturzl counterpart of Theorem (6.16)~ 

=id follows from it by a simple calculation using tbe definition of 

$,(z) given by (6.15). 
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(6.22) DEFII<ITIO:I. 51 Z2 (read: - Zl can be simulated by z ~ )  

i f f  -5 1 % .  that is, i f f  5 i s  isonorphic to L submodule of - 
1 2  1 

t [or iso~3rphic t o  z quotient ~ 0 6 u l e  of It I -  
2 

This definition is zlso functoridly related t o  the definition 

of "divide" ovsr a prbci2al idezl d&n R because of the foUoviri 

(6.23) TEXOE3.f. Let R be a > X, Y - 
R-mdules. - men Y i s  (isonorpvnic) t o  a submodule or quotlent ~ o d u l e  

of X i f  and only i f  - 

Sufficiency. Ta3te both X and Y in canonical 

fom (k.3&), ~5Cn , x generating the cyclzc pieces of X, 

Yl, ---, Yr(x) (a yi = 0 i f  i > r(Y)) those of Y. The 

assZgxeat y. u (W~(X) /$~(Y) )X~  defines a mm@sm Y + X, that 
1 

is, e a b i t s  Y as (isowr-hic to) a submodule of X. Similarly, the 

~ c s * ~ f  xi *ii yi ciefhes a.~ epimcrphism X + Y exhibiting Y as 

(isamorpkic to) a quotlent nodule of X. 

Necessity (foJloxbg WJIiBKrCI [.91ke3re, Chapter 7 (2e =do), 

Section 4, Exercise 81). Le t  P be a submdule of X. By (k.34), 

X L/X where L, N N free R-mdules. By a classical isomorphism 

meorem, Y i s  isomorphic t o  a quotient module 1 ,  where L 3 E4 3 N 

and 1.5 i s  free (since submodules of a free module are free). 
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From the l as t  re3-%tion, r (Y) < - r ( ~ ) .  Now observe, again using (4.34) 

that, fc r  a ~ y  R-mdde X and' any ?r E R, 

therefore 

- R(rk(x) = ideal generated by (n: r (TX) < k] . 
Since fl is a submodule of 71X for all n E R, it follows tha t  

R$ (x) ~ K . + ~ ( Y ) ,  a d  the proof is c q l e t e  for the ease when Y is 
k 

a s ~ . m d z i e  of X. !be proof of the other case i s  similar. 

PIIOOF. Inmediate fram the fact  that % is a submcdule 
of C (see Section 7). 

NOW we cul summrize main results of t h i s  section as the 

(6.25) - J??XDE D E ~ ~ I T I O I ?  THEOREX FOR LINEXR DYNlY31CAL SYSTEI-is. 

The f037owing conditio. s are equivalent: 

i Z1 F v i d e s  Z2. 

(35) ~ ~ ( 2 ~ )  divldes qi(Z2) for all i. 

( i i i )  can be simulaked by 3 . 
1 2 

PROOF. This follows by cornbinirg Theorem (6.21) with Theorem 

(6.23), since qi(Z) = qi(%) by definition. 



. (6.26) - ~LWGWREWFION. The definition of z11z2 means, i n  s y s t e  

theoretic terms, that  the inputs and outputs of the machine chose t r a s f e r  

m c t i o n  is  Z2 are t o  be llrecodedll: the origioal input u2 i s  replaced by 

an input w2 = B(z)rul and the output r2 is replaced by an output 

rl = A ( z ) ~ ~ ;  with these "codiiig" operations, L2 w i l l  act l ike 

a nmhine w i t h  transfer Pmction Z1. In view of the definition of a 

trausfer function, the equation Z1 = AZ2B is  a l q s  satisfied vhenever 

A, B are replaced by z, -reduced modulo $ ) !L'his new that the 
z2 

coding operations c m  be carried out physically given a delay of 

d = deg $ units o i  time (or more). NO feedback is involved i n  codine, 
z2 

it is merely necessary t o  store the d last elements of the input and 

output sequences. Hence, in view of meorem (6.25) Corollary (6.24), 

ue can sw that it is  possible t o  a l t e r  the dynamical behavior of a 

system C arbitrari ly by external coding involving delay but not 
2 

feedback if  and only if the invariant factors of the d2sired external 

behavior (2 ) are divisors of invariant factors of the external 
1 .  - 

behavior (2 of the given system. The invariant factors mby be 
=2 

cal ledthe  PRIMES of linear systems: they represent the atoms of system 

behador which cannot be simulated from smaller units us- arbitrary 

but feedback-free &rig. In fact, there is a close (bot not isomorphic) 

relationship between the Hrohn-Rhodes primes of autonab theory (see 

m, FAZIB, ard ARBIB [1969, Chapters 7-91) and ours. A w treat- 

ment of this part of linear system theory w i l l  be published elsewhere. 
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7. ABSTRACT THEORY OF REALIZATIOITS 

The purpose of this short section is to review and expand those 

portions of the previous discussion whicli are relevant to the detailed 

theory of realizations to be pressnted in Sections 8 and 9. The same 

issues are examined (from a different point of view) also in KAMAN, 

FALB, and ARBIB [ 19691 . 
Let f: a + I' be a fixed input/output map. Let us recall the 

construction of X' as a set and as carrying a K[ z]-module structure 
f' 

(sections 3 and 4). It is cleu that (i) f = L ~ w ~ ,  where 

are K[ 21-homomorphisms, m d  (ii) pf = epimarphism while L = nonor lorphism. f 

We have also seen that 

rpf = epinwrphism W Xf is completely reachable; 

1 rf = monomorphism W Xf is completely observable. 

These facts set up a "functorm tetween system-theoretic notions and 

algebra whLch characterize X uniquely. Consequently, it is desirable f 

to replace also our system-theoretic definition of a r2alization (3.12) 

by a purely algebraic one: 

(7.2) DEFINITION. A realization of a K[ z]-homomorphism f: Q -, I' 

is any factorization f that is, any commutative diagram 
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of Hz]-homo~orphisms. as]-module X i n  called the s ta te  
5 - 
rno$ile of the realization. A r e a l i z a g n  i s  can_onical i ff  it i s  

completely reachable and completep~ observable, t'r;at.is, IJ. & 

surjective and t i s  injectivz. 

A realization always exists because we can take X = 0, p = 12, 

r = f (or X =  1: p = f, l =.I$. 

(7-3) RENARK. It is clear tha t  a realization i n  the sense of (3.12) 

can always be obtained from a r e m z a t i o n  given by (7.2). I n  fact, 

define C = (F, G, H) by 

G = p rzstr ic ted t o  the submodule [a: Icul = 11. 

H = L followed by the projection r t+ ~(1). 

It is  easily verified tha t  these rules w i l l  define a system with 

f, x = i. Given any such Z, it i s  also clear that the rules 

define a factorization of f. Hence the_correspctr~de~.ce b2tween (3.12) 

and (7.2) i s  bijective. - 

!the quickest way t o  exploit the algebraic consequences oP our 

definition (7.2) i s  via the following arrow-theoretic fact : 
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(7.4) ZEIGER FILL-IN LEMMA. Let A, B, C, D be sets and a!, p, y, 

and 6 set maps for which the following diagram commutes: - 

If a is surjective and 6 is injective, there exists a unique set - 
cp corresponding to the dashed arrow which preserves comutativity. 

This follows by straightforward "df agram-chasing", which proves 

at the same time tke 

(7.5) COROLLARY. The claim of the lemma remains valid if "sets" 

are ~eplaced by "R-modules1t and "set mapsn by "R-homomorphisms1'. 

Appl~ing the module version of the 1- twice, we get 

(7 06) PROPOSI'i!ION. Consider any two canonical realizations o f 2  

fixed f: _the corresponding state-sets are isomorphic as K[ z!-modyles. - 
/ 

Since every K[z ]-module is automtically also a K-vector space, (7.6) 

shows that she two state sets are K-isomorphic, that is, have the same 

dimension as vector spaces. The fact that they are also K[z]-isomorphic 

imp'lies, via Theorem (L.341, that they have the same invariant factors. 

We have already employed the convention that (in view of the bijection 

between f and ef), the invariant factors of f and 4 are to be 
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identified. I n  view of (7.6), this i s  now a genzral fact, ' not A-ependent 

on the.Bpecia1 construction used t o  get X Wz can therefore restate  
f 

(7.6) as the 

(7 -7) ISOl4ORPHISM TI-EOREM FOR m01\31CAL REALIZATIOIIS. Any two 

canonical realizations of a fixed. f have isoraorphic s tate  modules. 

The s tate  module of a canonical realization i s  uniqueu characterized 

iuP t o  isomorphism) by i t s  Lnmriant factors, which may be also viewed 

as  those of f, 

A simple exercise proves also 

(7.8) PROPOSITION. - I f  X i s  the s tate  module of a cafioifical 

realization f, then dim X (as a vector space) i s  minimum i n  the 

class of a l l  realizations of f .  

This resul t  has'keen tsed i n  some of the l i te ra ture  t o  justify 

the terminology ''minimal realizationt1 as  equivalent t o  " c = o ~ c a l  

.real%zation1'. We shal l  see i n  Section 9 thzt  the tva notions are  

not almys equivalent; we prefer t o  vies (7.2) as the basic defini- 

t ion a-ld (7.8) as a derived fat*. 

(7 9) IWlARIC. Theorem (7.7) constitutes a proof cf the pxeviously 

claimed (4.24) . To be more explicit: i f  Z = (I?, G, H) and 
h 'A h A 

C = (F, G, H) . are two t r ip le s  of matrices defining canonical realiza- 
. .  . .  

tions of Cne sane f, then (7.7) 5nplj.e~ the existence of a vector- 
n 

spacc isomorphism A:.X 4 X such that 
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A 
If we 2-ti% X m d  X men A is simply a -5s a e  and it 

'olhus +at -the clsss of a77 mtrix t~iples w3ickt * E  canorLca7- 

reaXzz;tio+s of a fix& f is i s m q ~ c  w%%h tne qeneral Unear 

proup over 3. 

a factorizztfer; of f suck mt dim X < CO. ithis is -the~ 

q r e s s e d  by ssghg tkat f hiss f i d t e  rank.) Gfven my such r e -  

&ion, it 5s pss5Ue "a ohm a --onica.l one bx a process of 

e Rare precisely, v;t Wve 

( 7 . ~ )  THEXEEX. s e ~ g  r e a l l z ~ t i s n  of f w5CI &ate m25ule X 

cor.bins a szbo~otler-Lt (2 uqu~tfernt af z submodule, cr equivalently, 

a c=ozCeal rezEzat-ion of fS 

P300F. %e re2cMbIe states Xr =image i; are a submodule 

of X +nci so are the unobserye'ole 'states Xo = 5 r w L  r. Hence 

X, = X /X firo is a subqpatient af I. It fdlous imediately that r ' r  
X; is  a C B ~ O ~ ~  s w e - m d u l e  for f. [The proof m y  be visualized 

v i ~  t h e  foU(?iP2 cazmtztive d i a g r q  where the j 1 s srzd prs are 

cam= d injections m.6 projections.] CI 
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(7.12) lG34A.I- Sime any s u b q i h ~ %  of X is isanor9hic to a 

that X can sizte-atzte ~ d u l e  of a ;.ealizatiaiz 3x13- if d, (?jl$. (x) 
1 1 

f ~ r  all i <re& .&o Corallaq {6.2;i-j ) . This condition, houevsr, is 

no& e2o@ s-c the *i are 2 n k z i z n t s  of &Gi? isomrpkiss  g~ t .  

imx@iss; of tAe comm';ative diagram (7.2). 

!5e precedizg E s c ~ ~ t s s f c ~  d ~ o - d d  be B q t  in ad to &ah over- 
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8. CONSTRUCTION OF REALIZATIOI~S 

Now we SaU develcp and generalize tEu2 h s i c  algorithm, originally 

due t o  B. L. Eo (see EIO and KAI&!AN Ls661), for comguting a c-nical 

realization C = (F, Gj 3) of 8 given input/output nap f. Host of 

the discuss5on will be i n  the language of n t r i x  algebra. 

Notatioas. Here a;ld i n  Section 9 boldface capita3 letters* w i l l  

denote block mai;rices or sequences of matrices; f b l t e  Slock =trices 

w i l l  be denoted by SIIIELIL Greek subscrists on boldface c z . ~ i k l s ;  the 

elexients of such =trices will be 6enoted by o r d i w ~  ccf,itals. TMs 

i s  intended t o  make the practical asgects of the conguL&t.ions self- 

evi&nt; no f l r r ther  ez-ilanations will be mzde. 

LeC f: 9 -, I' be a given, fixed z j-h~mamorplrisa. Using only 

the K-linearity of f we have that 

&re the % (k > 0) are p X m matrices over the fixed f ie ld  K. 

Xe demte t%e tota l i ty  of these matrices by 

!Ben 1% is clezr that the specif icat.1on of a a z] -ho~omorphism f 

is  e ~ i v z l z n t  t o  the specificat,ion of i t s  mtrix sequence &[f). &re- - 
over, if Z, r e a i z e s  z :8.3 r,z2 be vri t tea  exp l ic i tu  as 

*?Tote t o  t2rf~ter: IndLcztcd by double wdtrline. 
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Camparing (8.1j and (8.2) we can translate (3.12) into an equivalent 

matrix-language 

(8-3) DEFIMTION. A dynamical systen Z = (F; G, H) realizes a 

(matrix) inf in i te  seauence 4 - iff the relation 

k t  u now t r y  t o  obtain also a mztrix criterion for an infini te  

.. sequence A ' t o  have a finit-e-dimensionzl realizatioa. The s i q l e s t  - 
- t o  do that is t o  first m i t e  down a &rix representation for  the 

map f: Q + l?, So let 

and verify thzt g(A(f)) represents f when u, E R i s  kiewed as an - - 

Classically, I$(?) is  Imo-a as the (infinite) Hzd~el m t r i x  associated - - 
k i t h  -4, We d&n.oi;e by H - the ir X V block submatrix of appear- *, v - 
i .  in' the Qpper 1eft:habd corner of It. - 

(8-4) PROPCSITIGH: - Let C be any realization of 6. - - Then 

~rrnkFE (A) < dimZ for a l l  p, v > 1. * > v =  = . . = I  



(8-5) C O R O ~ .  A n  infi:.,te seausnce 4 - has a finite-dinensional 

realization only i f  rank H+, ,,(4) i s  constant for all 14 V sufficiently - 
large . 

PROW. If din C = =, the claim of the p o p s i t i o n  i s  

vacuocs (althollgh formliy correct!). Assume therefoze that dim C < 0 

and define from Z the f in i t e  block matrices 

and 

% = [ ~ n ~  H ~ F I ~  ..., H ~ ( F ~ ) ~ - ' I -  

!hen 

by the definition (8.3) of a realizatiolz. It is clear that rsnk R =v 

and rank $ are gt most n = dim C. !!&us our claim is reduced t o  

the stanjlard matrix fact 

rank (AB) < min ( re.& Aj rank 91 . - 0 

Our next objective is tl;s proof of the converse of the coronry.  This c m  by 

done in several ways. !5e original praof i s  due t o  HO and WIlMQI [ 19661 ; 

similar results were obtained independently and concurrextly by YOUIA 

and TISSI [ 19661 as we= as by SU;~W&Y [1g66]. a -o  different proofs 

are adalyzed and compsred in  w !  FALB, and BRBIB [1969, Chapter 10, 

Section I l l .  All proofbdepend on certain finitzness arguments. We 

shal l  give here a variant of the prwf develoged in HO and m.LW [19691. 
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(8.6)   TI^. The infini te  Ifankel =tr% .g associated Kith - 
ths sequence A - has f M t e  1eW.h A = (A1, XI) i f f  one of the follow- - 
ing two equivalent conditions holds: 

At = min (ll: rank &t~,;v~=rank Ill,* for a l l  K,V = 1, 2, ... ) <= 
9 .  

or - 
- ={lQiIl , -.raIlk$,jI,+~ f o r =  K , p  = 1,2, ...) <a. 

. . 

he is the row length of H A'' is the calm length of 3. - - 

The equi-ence of the two conditions is  immediate from the 

e-ty af the row rank and cobmu rank of a f iu i te  matrix. Tne proof 

of the folloubg result ( m t  z-.Aed in the sequel) is left  for  the reader 

as an exercise in f-arizing himself with the spec i a  pattern of the 

el-ts of a Hankel matrix: 

(8.7) PROPOSITION. For any li, the fo l l~ r r im  inequalities are - 
either both true [g bas f in i te  lewh1' D r  bot5 false [otherwise]: - 

A l < r a n k H  - .C mhn, 
dtl, A" = 

. A" 5 rank lii, - - ,ph) c = PA', 

The most direct consequence of the finiteness condition given by 

(8.6) is the existence of a finite-dimensional repesentation s a a ~  - 
of the shift operator a*. acting on a sequence 4. The llopkrand't - - 

%ill be the Hankel' xistrix associated with a given &. A s  we shall see -. 

soon, + M s  representation cf the shif'k operator W i e s  a rule for 



computing tke matrix F of a realization of 4. -- This is e m t k v  what 

we would expect: module theory tells us thzt, loosely speaking, 

N gg - u-" z "F. 
(8.7) DE,FDX'IIO=L'. The shift opezator o A 02 m i r f ini te  sequence 

5 i s  givm by 

the corresponding shi f i  oyerator on Ra_nIcel =trices is then 

9: EI(A) - - t+ HH(~A). = A= 

(of course, u is uell-defined d s o  on s u b t r i c e s  of a Hankel matrix.) H 

(8.8) WUH IJWW. A HcxGsel m t r i x  Zi - associated with an Lnfinite - 
sequsce A has finite length i f  and o d y  If thc shift ooerator uH - 
has f5nita-dimensio- lef t  and right m t r i x  rextreseatat5.ons. Precisely: 

H k s  M t e  Zemh A = ((A': hw) if arrd only i f  there ex is t  g8 X I' = -  

cmd La X Im b1& matrrces S and Z sxch thzt  - = - =  

and .murthem3re t'nc aini.mun size of these &trices satisf'Jl2n.g (8.9) - i s  

At X At and hw X An. - 
PROOF., Sufficiency. Take any It' X 1" block matrk Z_ - 

r i  sstf sfies (8.9). Compute the last calm of $, r,,Z: 
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for all j = 0, 1, ... (where by is the (p, v ) ~ ' ~  element block 

of I ) .  - &tion (8.10) proves that 

lank !&+l,2w = rank for- a l l  K = 0, 1, .-. ; 
the general cane follows by regetition or" the same argument. Hence the 

existence of the c W d  Z_ - implies that the co1m.u length An of g - 
cannot exceed the size of -2. - If actually A" - is m r  than @ size - 
of the -st Z vhich works in (8.9), we get a contradiction fran - 
the necessity part of the proof. The concerning S_ are proved - 
by a strictly dual argument, 

Hiessity. By the definition of A", each column of the 

(A= 4- 1) th block column of I&, is linezrly depdent  on the 

columns of the preceding block colurvls of H+, moreaver, this 

property i s  true for a l l  integers v, no m&tter how large. So there 

exist n X m matrices Z1, . . ., ZA,, such that the relabron 

hclds identically for a l l  j = 0 1 . . How define 2_ t o  be an - 
A" X h" block companion mtrix of m X m block made up from the 

Zi 

just -defined: 
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The verification of (8.9) i s  iruneciiate, using (8. U) . The existence 

of At x 2,' block matrix s - verifying (8.9) follows by a s t r i c t l y  - 
dual argument. 0 

Row we have enou~b lcaterial on hand t o  prove the strong version 

of Corollary (8 -5)  : 
t 

(8.10) ~ 0 ~ .  An inf in i te  sequence 4 has a finite-dimensional - 
rea.lization of dimension n i f  and only if the associated Iranlrel 

matrix H has f i n i t e  Length h = ( A * ,  A"). - =  

PROOF. - Sufficiency. Let Ehl,, be a A" X 1 block 

column matrix whose first block e l a e n t  is  an m X m unit  matrix md 

the other blocks are m x m zero matrices. Us@ (8.9) with el' =A1', 
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Then, for  e31 k > - 0, comput 5 

t3e second step uses (8.9). By definition of uA and E, the l a s t  

k 
m t r i x  i s  just the (1, l)th element of - lI(a--(A)), - ""lY %+ka 

Hence the given C '  i s  a realization of 4. - 

Necessity. This i s  immediate from Cor: ;ary (8.5). 0 

ITOW we wznt t o  attack the problem of finding a canonical realiza- 

t ion  of &, since the realization given by (8.13) i s  uuaally very far - 
f'rom canoi3ical. Olrc succeeding considerations here anr? i n  ~ e d t i o n  9 . 

&re made more transparent i f  we digress for  a moment t o  establish 

another consequence of (8.8). 

By ou5rageous abuse of m e ,  we sh&Ll say that 4 Us f i n i t e  - 
length i f f  H(A) has f i n i t e  length. We note - - 

(8.14) DEFINITION. An ln f in i t e  sequence B i s  an extension of - 
order N of (the i n i t i a l  part of) an in f in i t e  sequencs A iff - - - 
% = % for k = 1, 0 . 0 ,  N. 

(8.15) THE:O-. No i n f in t t e  seauence of f i n i t e  length (hl, A") 

has d i s t i ~ c t  lenqth-pres:-rving extensions of any order N 1. hl + A". - 

PROOF.. Sugpose .B - i s  a-'-length-preservinl: ext;ension of order 

N of A, the lengbh of both sequences being (At, A"), w i t h  N > A1 + A". - - - 
By (0.8), both sequences sat isfy r u e i o n  (8.9), with s u i t a b ~ e  & and 5. 
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The sequence 4 - i s  Uiquely determi~ed by acting on llA,,A,,(h) - 
Prom the l e f t  &nd the sequence - a i s  uniquely determined by ZB 
acting on the matrix zhl, At, (E) I *om the right. The twc mai~fces  

a re  equal by hypothesis on N. Moreover, 

aze also equal, since the matrices on the right-hand side depend anly 

on the 2nd' .--, N-th member of each sequence. Using only this fact 

and the assoc ia t iv i t j  of the matrix ~roduct 

Now we can hope for  a realization algorithm which uses only the 

first. At + A" terms of a seqzlense or' f i n i t e  length. I n  fact, we have 

.!8.16) B. L. FP8s REALIZATIOIt W R I T H M .  Consider any in f in i t e  

sequence A - of f in i t e  length with associated Hankel matrix H. The .- = - 
follotring steps w i l l  lead t o  a canonical realization of A: - - 



i n  doing so, determine ( i i )  Compute n = rank HA, 
nonsinrndar ph' X pht mAt' X'mh" matrfces P, Q such tha t  

( i i i )  Compute 

m where Rp, C are idempotent "editingf1 mahrices corresponding t o  Cie - 
operations "retain only the f i r s t  g --- roks' . ... L I ~  "retain only the first 

m columns". 

We claim the 

(8 19) REALIZATION THEOROYI FOR IIWIKCTE SEQUENCES. -For an,, in f in i te  

sequence A whose associated Hznkel matrix H has f i n i t e  length - - - 
(A!, A"), . B. TU. Hots forrnu12.s (8.1.7-18) yielij- a canolical realizaticn. 

PROOF. If Z definsd by (8.17-18) i s  a realization of A, - 
then it i s  certainly cznonical: by (8.4) C ha.s minimch dimensicn' in 

the class of all realizations of and so it 1s canor;ical by (7.8). 
d 

The required ~ e r i ~ c a t i o n  i s  interzsting. Firs t ,  drop a l l  

subscripts. Observe that H# - = QGRP i s  a peudo-inverse of H, - tha t  
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- -Fx Y 
_- = 11. Tlen, by d 2 Z W t i o n  sl' F G, 3, snd If*, is .- - - - -  - - - 

first n eel-- sf t$~, -fie& is- j u s t  %+kt as re@reS. D 

(8.~3, flr ~ V G  rzspets. 
. - 

( 5 )  It is m laager- a c e s k y  to cqte 5: - we s*r 
- 

- .  

e t ( A -A*% 5s *t of the of the $:c3lerc. A= 

i Yo- s -{8,38) g 2 ~  Yse desired 2 esliza*f on is .w&l 

W &pe& (just : .'~=e_ b e  latter) Yre&-.- 09 (8;a)- . . 
. . 

- < ~. . 



Br; 8nnarently - - seriocs 'imik t icn ef the  a lgar im ( 3 . ~ 6 )  is fie 

necessity to vex ify ~ 3 s t r a c : t U  tbzt "4 - U s  fizCte 1eq5tfsV. Of 

cocrse, this am ke doue oslj- cr; the lksf s of c e r t z k  s-=cia Qptheses 

, - given ir d~rarxe. (&angles: (2 )  % = O for f l  ir > q; 

(if)- % = ccexEi.cieEts of the r;y-lnr tzqasfc~1 oz 2. ratio& fri?ctzcn.) 

Pcxc&e&-, GfSculty is only spj?zrezt, fcr ~ c c e d i z g  5.13-elo~- 

e 1 t s  a be ~ ~ n e d  flmt'ber: 

q -+;r!j%e secuecce A - m2 the corrcs>z~t25q Ym'Lel ~ t r h  H. - - - 

6 with At = lB, An = I" @yes s c ~ ~ , o I ~ c ~ ~  xedizaf.i3a of A. - - - 

Zxaetly as the ucessZtjr pzt cf me wocf ar' 

(8.8), c-eon (9.22) -+ss ~2 existezc~ of Z suci ~t - - 
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By repeated .z.a?Ec~tiori of (8.231, i t  follows thz+, we have 

HOU it 1s c l e z ,  fmm (8.8), that A: 5 e l  m d  nfi 5 I-. !BE uoique- 
A - 

(8.13) 5s st= -5, even t3110u& (IwJ 2") is set r-.cessarily 

l3xarcm (I?.=) sq-s, fo eTZ'ect, Chat, e m t 1 5 c a . I  reUzztion of 

scse extel~fon of & is  2;vzys possible as s c o ~  as (8.22) is satisfZed. - 
&reover, ((822j & be used zs  a ~rzcklcal crZteria for c011stnicCuZag 

by t r i a  a,& error a camnicel r u z - t i o s  of any 5 to b v e  - 
f.Inite 1eagt.h (but kit-mu& beiq ~ i v e n  As? AV') . 

(8.25) I .  - i )  -re is m bf'ini* setpace (9 = n = 13 

& for wMch (8.22) is never satrsfied. - - 
iz) If g j a , e m  is  s-e azd has i tdl  (for instzllcc, 

i~ the sca3ar case), Uien (8.22) 2s aubm.tiaJly sa%irfiied- 

(iii) If tbe al.goritb (8.16) is 2 3 , 0 ~ 2 ~ ~  -- with~u% ay informa- 

tiso conzerfing c&ticn ( 8 . ~ ) ~  the  s y s t a  X &?2ned by (8.28j -sill 

a h i s  r-ze - s o x  exbensio~ of &, ~t lease of order 1- It 2s not - 
kmiri, kowever, %w to get a simple r'omfla w%-ch vcdd deternine i 2 ~  

~ x l b l  order cf W r  extexicn of 4. - 

The rer&-ning i-nterest* q~estion is  tbai: k?at czlr be sail! if 

(8.22) is not satisfied for a f in i te  co'. of &ta 5, . . ., % and 



any , ' satisfying + it' = Y. =s problem is the topic of 

the next ~--2t.ion. 

(8.25) -3 a C 4 E i E .  An esse t i z l  fezture of 5. L. .Hols da:orithm 

is thax i s  preserves the block structure of the d a t a  cf the problem. Of 

course, one can ob-n parellel results by treat- l&l,lm as811 

ordinary mtrix, disregardiq i t s  bloc%-make1 structure. Scch a 

procedure requires lw!shg at a minor of H - of rank, ard was - 
described explZcit3.y 5y SILmC%N [19663 SILWICSi and NEiWFiiS [l*]. 

There does not seem to be any obvious c ~ u t s t i o a z l  a5iraatage associated 

vith the second mi&&. 



9 m O R Y  OF PARTIAL ~ ~ T I O N S  

In oae obvious respect the theory of rezlizations developed 

i n  the previous section i s  rather unsztisfactory: it is concerned 

viL& infinite sequences. F r a  here on we c z l l  a system satisfybg 

(8.3) a coqle te  realization, t o  distinguish it from the przcticalQv 

more interesting case given by 

(9-1) DEFINtTIOli. - let A - - = (AlJ A2, ... ) be an infini te  

sequence of I> ;c m =trices over a fixed f i e ld  K. A meal 

systera C = (F', G, H) i s  a part ial  reail-%tion of order r of - - 

We sbSL us? the tel.zliwiogy if, i@tezd of ul ZzGinite 

s > r. P-e rezscjn for U - s  convention w5.U Ye clear j3-m the dis- - 
cussion to Sollow. W e  shall call tfie first r .i;erms of A a p r t i a P  - - 
sequence (of wder r). 

The cclmepts of canc112csl pzrkl2.'- rezlization and minim1 

m ~ r t i a l  reali=&2oc vill .t understood Z n  exzctly the s m e  sense as for 

a complete rezlization. iie uarnthe reader, bowever, that now these 

txo notions w i l l  turn out t o  be inequ5ualeak, in that 

but rot conversely. 

Our =in hkerest  w i l l  be t o  deterdne 21l equivalence classc;j 

of ~ Z ~ ~ T L L  =tZzl rez3zztiolls; i=i  gaerzl,  e given sequecce -111. 



have infSte1.y ESIY izequivalellt niW p=t i r l  rezlizztions i f  

r is sufficiently n.nall. 

According to  the &?i 13eoren (9.21) of +&e theory of re-za- 

tions, the p P . 5 ~ 2  redizat ion probLem has e d q u e  salutiori 

whenever the r h i  cosdition (8.22) i s  sal-isfied. I f  the l@h r of the 

pr3ia . l  s eq~ iwe  i s  prescribed 2 priori, it c q  u2ll hapsen .tki (8.22) 

does not hold. What do do? C l e z r l y ,  if xe k v e  a T-" ptia 

realizatior (r", G, £I) of order r we ca3 exte- &z 

sequence of A on ~315~3 -,c re23izztion is 'wed t o  a minite =r 

Coaseq'il=ntly, w e  have the pre-y' 

re-slizztion fcr A is equivalezt fo the dete-z-rZnatiza of zll 
=r 

extensfons of a 9 t Z a l  sequence 1 such tBat  t%e eeen?ed =r 

sequezce is 

- ~-dizenric?~l Z X C ,  Fore st?ong7j-; (i) finit- 

(ii) 55s dimension i s  mLnic21 i n  the clzss of &I1 exteasZo~s.  

It is trivial t o  prow Wt f i a i t e - & e n s l o  exte~sions exist 

for aoy prtlal seq-~=iln_e (of f in i t e  le~gth,. Hema tbe pro'blen i s  il.-i=rliaLely 

reduced t o  dete- extezsions ~ E c h  have mil.ilr-.l dinension. The 

solution or" this l a t t e r  problm coxsists of txo steps. First, ve shov 

by a trivial argumenc a t  the mi- dirznsioa c a  be bounded frm 



below by an exmination of tke Hvkel array defined by the pzrtiaL 

sequence, Second, and this  is rather surprising, we shcw that the 

lo',er bound cul be actually attained. For fhrther details, especially 

the characterization of eqcivalence classes of the minima'l partial 

realizations, see mL4N 1196% and 19703!. 

(9-3) DEFINI!lZW. By the -el arzq g(!($) of a partisl 

sequence A we mean that r X r block Emkel matrix whose (5 ,  j) th 
=I 

%loch i s  Aicg - - -if i + j - 1 - r and undefined otherwise. 

In csbher words, the HaAel array of a parti& sequence A =r 

consists 05 block rows and columns made up sf subsequences 

A ..., A (1 < p  <I-) of A andblaak spaces. 
P' r - - 2 

(9-Q) PROKISITICH. n { Z  ) % o *Lr the number of rows of the 

IEankel array of 5 M c h  are linearly independent of the roxs 

above then. !Then the dimension 6f a realization of A is a t  least =r 

n (A 1- 0 =r 

PROW. The rsr;lk of ary IEankel ntrix of an infinite 

sequence & is a lower bound on the dhxmsfon of realization - 
of A, by Propsitian (8.4 ) . ~y ~roposi-i;ion (9,2), it suffices 

to corrsfder a suitable extension A _ ,  - of A =r : This -lies *'filliag 

in" the blank spaces 5a the Iknkei. armv of &. Regardless of how 

H(A ) is fiU& i;l, the rssk of the res-tlting . r i( r bhck  EEs.dsel = 

matrix is b i d  from below by %(ir), 0 

By $he ,block syuzetry of the Flankel matrix, ire ~ ~ o u l d  expect 

tc be able tz dete,-mine o (.A ) by €a andlogous krniilation of' the - 0 =1" 



columns o f  the -el =rag of $, - thereby obtaining the - same 

lower bound. This is  indeed true. We prefer not t o  give a direct 

proof, since the result  wi-11 follow as a corollary of the Ma5n 

'Phe c r i t i c a l  fact  i s  givw by the 

(9.5) L .  For a partial sequence A define: 
=r 

t A ) = smzllest integer such that for  k'> ht every 
"L 

row of I I (A ) i s  linearly de:?nsent on the - =r 
r o w  above it. 

hn(llr) = snnliest integer such tbat for  kl' > A" every 

c o l m  i n  the k-th block coluwr of H-(A ) - =r 

i s  linearly dependent on the c o l ~ n - s  t3 the 

l e f t  of it. 

Every partizl seaugnce A may be extended t o  an i r f i d t e  
=II 

sequence i n  zt least  one way such that the cond5tion - 

(9.61 r& Ks ,,($ = 'LA(~LL) for  a l l  p > (A ), Y > Vy (.Ar) 
-9 =r 

is satisfied. 

PRCOF. Tht: existence of fhe nm3ers At. - h" Is trivial. 

such 

It suffices t o  show, for  arbitrary r, hov t o  select AHl i n  

9 way Wt the rr~mbers At, A", . -and no remaia co~stant .  

Consider t!-2 fast  raw of Aril -a& exzmine in turn a l l  the 

first rms of the first, secon&, Zlir6, ..., ALth b h d - r o w s  in 

2 (4 ) . lf the first row r E the first Slock row is linezsly aepen- - -r 
Cent the raia  aboxx it; (t&t is, 0), ve f i l l  in the f i r s 6  row 
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of AHl using t U s  linear dependence ( that  is, we make the f i r s t  

row of AHl a l l  zeros). This choice of the f i r s t  row of AHl 

will preserve linear depeadencies for the f i r s t  row of every block 

row below the second block row, by the definition of the Hankel 

pattern. I f  the firs+, row in the first block row is l i ~ e a r l y  

independent of those zbove (that is, contributes 1 t o  n (A )), 
0 =r 

we psss t o  the second block row ami repeat the procedure. Eirentually 

the first row of some block row will become linearly dependent an 

€hose above it, except when hk = r; in that case, choose the first 

row of AHl t o  be lirearly dependent of the f i r s t  rows of 

5, . . ., A . Rspeztiag tEs  process for the second, third, .. . rows r 

of each block rob*, evkntmlly AHl i s  determined without increas- 

To caaplete the >roof, we must show that the a b v e  definition 

Of AHl also preserves the value of h': That is, we mst shcw 

thzt nc new indepeadent co1un;;s are produced in the Ha.nkr:l axray of 

A bfhen Ael =r is f i l l ed  in. !Chis is verified immediately by noting 

that the definition of Am implies the conditions 

rank EE =r, 1 = r* E!.+l,ls 

--------------- 
.. . . 

"3f course, zo.. linear depel2e~ce i n  the f i r s t  step does JoS 
imply. t?zt tke =or:-~;,aondin@; row of Artl w i l l  'be CI i  zeros. 



With th-. aid or' this simple but subtle observation, .$he prablem 

is reduced to that. covered by the Main Theorea fq.21) of Section 8. We have: 

(9.7) W N  THEOEiEE2 FOR b m  2A.lWAL REALEATIONS.* 3 A =r 

be a m i a l  seQueKce. Tf-en: 

(i) Ever$ minimi. r<alization of A has dimension n (A ). 
-F o r  

(ii) Ail minhl realizations ~y be determined with the aid 

of B. L. Hols formulas (6.1'7-1E) - with h' = h 1 ( ~  ) and A': = htr(!- ) 
=r =r 

(iii) If r 2 - A~(A. ) + A"(A ) then t'ne ninhsl realization 
=r =r 

is unique. OtheMse there are ES ~ z ; z ) -  S-1 s~zlizetf~ns as 

there m e  extensions of -4 satiswng (9.61. =r 

PROOF. By the &in Le1m3 (9.5), every pzstial seqmaee A =r 

has at least one W M t e  extensioa vMch preserves hl, htr ~ ~ n d  

n , So we can apply the (8.21) of the prece- section. 
0 

It follot~s that the m i M  partial realization is uniqce if 

r 2 A~(A ) + htl(A ) (the A ~ ( A  ). + hn(A ) + 1 IIa&sl matrix ca2 be - =r =r =I =r 

filled in completely wiYn the available dztz); in ?fie coz$rary case, the 

mi- extensions will depend on the m e r  in which the =trices 

AM - 9  have been d e t d a e d  (su3jcct to the requirenent 

(9.6) 1 , 

In via*- af the theorez, we are ;ustified- in c m i r g  the integer 

..---- 
*A sirnilar result vas obtzined similtaneously md independently 

by ?!. . Tether (stanford dissertztion, 1969). 
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(9.8) lEMAEE. The essential point is bhat the qua~ities n 0' 

A', and A" &re Wquely detsrmined already from partial &ta, 

irrespective o f  the possible nonuniqueness of the minirea.l extensions 

of the partial sequence. We warn, however, that this result does 

not generalize to a l l  invariants of the minirnaf realization. For 

instance, one cannot determine from A* how q cyclic pieces z 
=& 

realization cr" A will h2ve: same xrmumaJ . . 
=r realizations 

be cyclic and others not [UT 1905! 

JiSaKIy, let us note also a second consequence of the Main 

Theorem: 

(9.9) COROLIARY. u p s  q(&) is the number of independent 
columns of the Hankel array of A (defined analogously witk. =r 

PFOOF. Jf %(A ) > n (A ) then, csing the Main Theorein, =r o =r 

we get a contradiction 30 the fact that ths rank of my Hankel matrix 

of an infinite sequence is lower bourd fa- the dimension of any reali- 

zation (Proposition (8.4 ) J . If q ( A  ) < n (A ) theu exkending A =r o =r =r 

to we contradict the fact that r e  - is at leas-;; 

eq- to no(%, . n 

In other words, the ~~arecteristic progertr of rmk, that 

cowting rank by row or cclumn dependence y.ief%s identical results, 

is preserved even f ~ r  incq1ete Hankel arrays. 

It is u s e m  to check a simpl~ case which KUustrates some of 

the techicalities of the proof 0-2 thz Fain Lemma. 

(9.1~) -PU3. The dimension of (O, 0, ..., 0, ~ l )  is precisely 

r X p, where 'p  = rank Ar &mi ht = Aft = r. 



10. GENERAL THEORY OF OBSERVmILITY 

In th is  concluding section, we wish t o  discuss the probleu of 

obse~vabilftg Cn a rather general setting: we will not assume 

linearity, a t  least in  the beginning. This i s  an ambitious program 

and leads t o  many more problems than results. St i l l ,  I think it i s  

interesting t o  give some indication of the difficulties which are 

conceptual as well as mathamtical. This discussion can also -- 

serve as an introducsion t o  very recent research Em 1969a. 

190aI on the observability problem In certain classes of nonlinear 

systems. 

!l%e motivation for th i s  section, as indeed for the whole theo-ry 

of observability, stems from the writerr s discovery [IQUXAN 1969a] 

that the problem of (line=) s ta t is t ica l  prediction and f i l ter ing 

can be formulated and resolved very effectively by consistent use 

of dymmical concepts and methods, and that th is  whole theory is a 

s t r i c t  dual of the theory of opt- control of linear systems with 

q m a t i c  Lagrangian. For those who are f d l i a r  with the stan6ard 

classical theo~y  of statistick1 Filtering (see, for instance, YAGLGM 

[1962]), we can summarize the situstion very simply by s:,! . ng t b C ,  

Wiener-Iblmogorov f i l t e r  

+ theory of finite-dimensional linear dyllamical systems 

= Kalman f i l t e r .  

For the h%ter,  the original pa2ers a r e  ElCADfAN 1960~, i963al snd 

C anci BUCY. 19613 . 



The reader interested i n  ?krther details and a m3dern exposition i s  

referred especially t o  t5e monograph of KAIN9N [ig69b]. 

We shall exanine here only one aspect of this theory ( ~ c h  

does not involve ZII~ stochastic eleme~ts): the s t r i c t  formulatFon 

of the " M t y  principle" betveen reachability and oSser-ability. 

!Chis principle uzs formally stated fgr the f i r s t  t i m e  by gAIHW [ 196Cc 1, but 

the pertbent discussion i n  this paper i s  limited t o  the linear case and 

i s  samewhat ad-hcrc. Aided by research progress since I*, it i s  

m w  possible t o  develop a completely general apprach t o  th% "duality 

principle". We shall do tkis md, as a by-product, we shsll obtain 

a new md s t r i c t ly  deductive proof of the principle in the now 

classical linear case. 

W e  all introduce a generzl notion of the "dual1' system, am! 

use it t o  replzce tt= problem of observability by an eqlivalent 

problem of 2eachabiEty. I n  keeping with the poiat of view of the 

earlier lectures, we shall view a system in  t z rm  of i ts input/output 

mag f and dualize ? (zather than z). The constructibility 

problem w i l l  not be of direct interest, since its theary i s  similzr 

t o  t'mt of the observability problem. 

Let R, r be the ozne sets as defined in  Section 4 and used 

froffi then on. We ass- that botk B and 1' are K-vector s-es 

(k = arbitrzry field) and recall the definition of the s3ift  

operators o and c on R and r (see (3.10)). We denote 9 

both shift  operators by z but ignore, -anti1 later, the K[ 21- 

module structure on R and r. 
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By a constant (not necessariiy linear) input/output map 

f: R +i' we shall mean any map f which commutes with the shift 

&erators, that is, 

Let tls now formulate the general problem of this section: 

its canonical realfzation C, and an input sequence V € i2 applied 

after t = 0. Determine the state x (jf C at t = 0 - from 

the knowledge ofthe output sequence of 2 - after t = 0. 

This problem cannot be solved in general! To see this, recall 

that the state set Xf of f nqy k *%wed as a set of fluictiors 

since a' is Nerode-equivalent to u, iff 

Giving V € S l  and the corresponding output secuence amounts to 

giving --ious values of f (a0 0)  (1) (namely those correspondulg 

2 to the sequences $, Vr, zVp + V r-l, ..., V, zV, z V, ...), and 

it may happen that these substitutions do not yield enough values of 

the f'uuctZon, f(oo-)(I) to determine the h t i o n  itself. This 

situation has been recognized for a long time in automata theory, 



where, i n  an &host self-explanatory terminology, one sqrs tha t  

"E is  in i t ia l - s ta te  determinable by an i a f in i t e  nailtipie experiment 

(possibly infinitely many di f l l ren t  v t s )  but not necessarily by a 

single experiment (single V chosen at w i l l ) .  See MOORE [ 19561. 

The problen i s  k t h e r  complicc.ted by ths  f ac t  tha t  it nay make a 

ciifference &€%her or not we &ve a free choice of V. KAIWN, 

F U ,  u d  P-SBLB [1969, Section 6 .3 ) ]  give some related commznts. 

A fhrtller a f f i c u l t y  in3erent i n  the preceding discussion i s  

that the problem i s  posed on a purely set-theoretic level  and does 

not lent2 i t s e l f  t o  the introduction of more.refined structural 

assumptions. We shall therefore reformulate the problem in such 

a way as t o  focus attention on determining those properties of the 

i n i t i a l  s ta te  ufiic'n can be co~putzd from the combined knowledge of 

thc input and ou%put sequence occurring a f t e r  t = 0. 

For simplicity, we shall fix the value of V at-. .O (no loss of 

generality, since f i s  not l inezr) . Then the output sqAence 

resulting from x a f t e r  t. = 0 is  given sinply as f(w), where 

We s'& use the circumflex t o  denote certain classes of 

fhc t rans  from a se t  into the f i e l d  K, For the moment, t l~ i s  

class w i l l  be the class of a l l  fhnctions. Thus 

? = ( a l l  functions I' +K}. 

An element ; of - .!? is  simply a "rulew ( i n  practice, a computing 

a l g o r i t w  which assigs t o  each possible output seqL1t~- --fie y in I' 
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a number in the field K. If f resulted frm the state x = ["If, 

then 

A 

gives the value of a certain function in R and, by definition of 

the state, also the M u e  of a certain function in f. This suggests 

the 

(10.2) ~ i t W C I ~ .  An element € 8 is hn c5sonable costate 

iff there is a ?$ E f? such that we have identically for a l l  

coE n 

In other words, no matter what the initial state x = [uIf is, 

the value of ; at x can always be determined by applying the 

rule ?; to the output sequence f(m) resulting from x. Note, 

care-, that this definition subsumes (i) a fixed choice of the.. 

class of functions denoted by the circumflex, and (ii) a fixed inpct 

sequence. after t = 0 (here V = 0). For certain purposes, it 

may be necessary to generzlize the definitfon in various ways 

[W~YLN 1g0 a], but here we wish to avoid all unesseatisl complica- 
.. . 

t ions. 

According to Definition (10.2), we shaU see that a system is 

completely observable iff every costate is observable. !Chis agrees 

vith the point of view adopted earlier (see Section 4) in a,n ad-hoc 
. . 

fUhio3. Also, the vague requirement to "determine xI1 used in 



(10.1) i s  now replaced by a precise notion which c a ~  be manipulated 

(via the actual definition of the circumflex) t o  express limitations 

on the algorithms that we m a y  apply t o  the output sequence of the 

system. 

The requirement "every costate i s  observablett can,be often 

replzced by a much simpler one. For instance, i f  X i s  a vector 

space, it is  enough t o  know that Itevery linear costate is observablett 

or even just that "every element of some dual basis is  an observable 

costate"; i f  X is an algebraic variety, it is natural t o  interpret 

"complete observability" as "every element of the coordinate ring of 

X is an observable costatett [ K A L 2  .l%Oal. 

We can now carry out a straightforward ttdualization" of the 

setup involved in the definitioc of the input/out-out map f: S2 +r. 

First, we adopt (again with respect t o  a fixed interpretation of tine 

circumflex) : 

(10.3) DEFINITION. The dual of an input/output mp f: R +I' - - 

i s  the map 

Dote that ? i s  well-defined, since the circumflex means the class 

As to the next step, we wish t o  prove that constancy i s  inherited 

under dualization. To do this, ws h v e  t o  induce a definition of the 
.a 

shirt  operator on I' and 6. The only possible definitions are the 

obvious ones : 
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. -Both of. these new shift operators will be denoted by z-la 

The reason for this notation will become clear hter. 

Now it is easy to verify: 

A 

(10.4) PROPOSITION. - If f is constant, so is f. 

PROOF. We apply the definitions in suitable sequence: 

( z )  (a) = (z-'-=?) (f(m) (def. of 3, 
= ;(z.f(o)) (def. of q), 

= ;(f(z-u)) (f is constant), 

= ?(?)(z*u) (def. of ?j, 
-1 A A 

= (2 -f(Y))(u) (def. of u~), 

A 

and so we see that f commutes with z whenevzr f does. 0 

A 

At this stage, we cannot as yet view f as the input/output map 
A 

of a anwical system because concatenation is not yet defined on I', 

m d  therefore hr is not yet a properly defined "input setw. 

In other words, it is necessary to check -;hat the notion of time is 

also inherited under dualization. In general; this does not appear 
A 

to be possible without some strong limitation on the class r. Here 

we shall look only. at the simplest 
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(10.5) HYRIZIIESIS. Every function j P sa t i s f ies  the 

finiteness cond.ition: There i s  an integer 1 (dependent on $) 

such that for a l l  r, 6 E r the condition 

y, = a,, k = 1, - * * ,  I?/ 
implies 

( 1  = ?(6)- 

I n  other words, we assume that the value of each y  ̂ a t  y 

i s  uniquely determined by same fin2te portion of the output sequence 

r. 

Assuming (10.5)~ !t is immediate that  P admits a cor-catenation 

multiplication which corret20nds ( a t  least  intuitively) t o  the usual 

one defined on R: 

We can now prove the expected theorem, which may be regarded 

as the precise f o m  of the "duality" principle: 

. 
(10.7) THEOREX. Let f be an arbitrary constant input/output 

map and ? i t s  dual. a y s e  f'urther that  (10.5) holds. Then - 
each observable costate of f (relative t o  P satisfying (10.5)) 

may be viewed as  s reachable s ta te  of ?, an4 conversely. 

- PROOF. Fi rs t  we determine the Herode equivalence classes on 

F induced by 3. .By definition 
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h 

for a l l  2 E I?. Now 3 i s  l inea r  (!) ; i n  fact, direct use of 

the definition of Clf and (10.6) gives 

So ?of  and 8.f are equal as elements or i: =hey define the 

sane observable ~ o s t a t e .  Tr, fancier lenguage, the assignment 

is  well defined and constitutes a bijection between the reacha3le 
A 

states  of f and those costates of f which are observable 

relative t o  the G c t i o n  class ". 

Thus (10.5) i s  a sufficient. condition for the 5 a J i t y  principle 
n 

t o  hold. However, &e fac t  tha% t'ne canonical realization af f is  

completeQ- reachable i s  not quite the same as  saying thet the canonical 

realization of f i s  completely obserwble because the . la t te r  depends 
.. 

on the choice of r a d  therefore is not an intr insic  property of f.  

Moreover, Theorem (10.7) does not give aay indicat im how l1bigv X? i s  

and it may certainly happen that the obsembi l i ty  problem fa r  f .is 

a.eh more diff icul t  'than the reachability problem. These matters w i l l  

be i l lustrated l a t e r  by some exaniples.. 

Now we deduce the original form of the duality principle from 

Theorem (10.7). The essential  point i s  that  (10.5) holds automati- 

c a l l y  as a resul t  of l inearity.  

New definition of the +tion class: l e t  the circumflex denote 

the class of a l l  K-linear f'unctions. (All the under ly iq  se ts  wttb the 

K-vector smces, so the definition makes sense.) 
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The following facts axe well known: 

(10.9) PROPOSITION. * denote duality i n  the sense of 

K-vector spaces. T 3 h :  

Now we can s t a t e  the 

(10.10) MAIS THEORFSI. Suppose f K-linear, constant, f in i te -  

means K-linear dvality. !!ken: dhsnsional. Suppose further tha t  " -- - 
A 

( i )  f K-linear and constant, tha t  i s ,  a K[Z?']-homomorphism 

(and therefore written - as  fl) and finite-dimensional. 

( i i )  The reachable s ta tes  of r" are  isomorphic with the 

K-linear dual of 'Xf;  hence every costate of X i s  observable. f 

PROOF. The fac t  that  l? i s  K-linear implies, by (10.3)) 

tha t  i s  K-linear; the constancy of f always implies tha t  of 
A h 

f, by Proposition (10.4). (caution: f is  - not the K[z]-linear 

dual of the .K[z]-homomorphism f, and the construction given here 

cannot be simplified. See Remrk (4.26.) . ) 
To prove the second part, we note that  by Proposition (10.9) 

Hypothesis (10.5) holds and thus 2 = f* i s  G well-defined input/output 

map-of a dynamicall. system. We must prove that  the reachable s ta tes  

of P are isomorphic with q, the K-linear dual of Xf. This 

amounts t o  proving tha t  the K-vector space of functions 



i s  isomorphic with the kvec tor  space XXf. It suffices t o  prove 

thst the K-vector space generated by the K-linear functions 

i 
( 1 0 . ~ )  (A: x u [hfje .x)li, i = 0 , 1 , . . .  a n d 3  = l , . . . ,~ ]  

is  isomorphic with x:. Suppose that, for  fixed x, every A(x) = 0. 

men x = 0, by definition of the Nerode eqqivalence relation induced 

by f ( reca l l  here $he discussion from Section 3 ) .  Since Xf i s  

finite-dimensional by m o t h e s i s ,  it follows from this property of 

46 the functions (h) t ha t  they generate x:. Obviously, d i r ~  Xf = d i m  Xp 

so that everything i s  proved. U 

In  other terms, the fac t  t ha t  f = K[z]-homomorphism together 

with ?he appropriate definit ion of A implies that 

i s  a ~ [ f '  ]-homomorphism. Since (10.5) holds, we can interpret 
h 

f i n  a system-theoretic way, a s  follcxs: the output of the dual 

system at t = - k due t o  input i s  given by the assignment 

which i s  a l inear function defined on the k-th term of the input 

sequence. I n  fact, we have 
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(10.12) REMARK. It i s  essentially a consequence of Proposition (10.9) 

that  2 turns out t o  be the same kind of algebraic object a s  f .  Note, 

however, %hat 

=der duality the input and output terminals Ere 

interchenged and. t i s  replaced by -t (hence - z 

In terms of the p ic tor ia l  definition of a system, t h i s  

statement simply amounts t o  t t r e v e ~ . s i r ~  the directions of the arrowsv, 

which i s  the "right" way t o  define duality i n  the most general 

mathematical context, namely i n  category theory. We would exrgect 

tha t  the duality principles of system theory- w i l l  eventually become 

a part  of t h i s  very general duality theory. This has not happened 

yet beczuse the correct categories t o  be considered i n  the study of 

dynamical systems have not yet been determined. It i s  l ike ly  tha t  

eventually may different categories w i l l  have t o  be looked a t  i n  

studying dynamical problems. 

We sha l l  now present an exmple which should help t o  in t e r i r e t  

the previous results;  We emphasize, however, that  the theory sketched 

here i s  s t i l l  i n  a very rudinentary form. 

(10.13) EXAMPLE. Consider the system C defined by 
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with X = U = Y = I! mod 1, i.e., the interval 0 1 (1 is  to - 
be thought of s;s fdentified with 0.) Xe let u(t) = 0, We view 

x thzougf: its bi-sa~-y represeatstion 

It is clear frm tke dzf2?litian or' the s - s t a t h a t  the output 

sequmce due ta ay x is preciseu 

i Ccmeq~ent3S; i;;e x's are f s,-~@&c w2r;h the Nerode eq~iva- 

are obszr'i-&le ( m r e  prec5s2u9 t.h25e zre Fmtfons which d e z e ~  only 
A 

on s fLxs6 fiiLite sibset of the Sk(x) 1 s) . Tass: eii2.5r f does 
. . 

na-5 6efi!l.5 *-mic~l system or n ~ t  1111 coatai;zs-are abserwbl2, 

E03.let .. us . rg~*&c-i;t:e s+t . . 10, 1) 5y fts fn';ercect:cn 

with the , r ~ ~ t i ~ M s . -  ICis Fie= tbti there 2s- ~ G W  a fznite %oi-lt.im 
. . 

. . 

. . 

prbb~en is to rxpresa r (il(x1, - .  5pi$0 a-.r&io . 
.. . 

of' plynca'&Ls . ~ E . ' < z , [ ~ ] - L  3s aSwys-~br.. a l e  sSac~, each - x  
=d . . . - 

5 . ~  re;ti~nal, ). Itcrcpver, ' .x -.is r.kk Itel"i'. ,ti*. . jr- .ccq~t&l.e~~- in the- 



s t r i c t  sense since there i s  no uay of knoving vhen the algorithm 

has stopped. I=I other words, given an arbitrary costate -there exists 
. ~ 

m - fixed rule ?; such that the application of ?; t o  rx gives 
A 

x(xj for a 3 1  x. OIL the other hand, substituting into A; the 

results of t'ne partir.1-realization algorithm w i l l  give an appro-xi- 

mation to thz value of :(X) which always converges in a Sirtite 

(but a priori unknown) number of steps as  more values of the output 

sequewe are observed. In short, the costate-eetermination algorithm 

ZELS certair, pseudo-random e l w n t s  in it ssd t'nerefore cannot be 

described through the machinery of dete-ministic dynamicaL systems. 

(IS thzre same relation here t o  the concept-& diff icult ies of 

Qatup Merhanics?) 
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11. HISTORICAL CWIEhTS 

It is not an exaggeration t;o say that the a t i r e  theory of linear, 

constant (am? here, discrete-time) dynamical systems can be v5ewed as 

a systematic development of the equivalent algebraic conditions (2.8) 

and (2.15). 

Of course, the use of modules (over KE zl j t o  study a constant 

sqmre &rix (see (4.13;) has been "standardtt since the 1920's under 

the irfluenze of E. NOETHER and especially af ter  the publication of 

the Ibderrs AQebrz - of V-4N Dm RAEEUBT. Condition (2..15), by i t se l f ,  

nust be also qyite cld. For instance, - 11959, Vol. 1, p. 2031 

a t w b u t e s  t o  KRYILlV [ 19311 the idea of computing the characteristic 

polynamial of a square matrix A by choosing a random vector b and 

computing successively b, Ab, A%, . . . unt i l  linear dependence is 

obtained, which yields the coefficients of det (21 - A),   he method 

w i l l  succeed iff XA is cyclic w i t h  generator g.) However, the 

merger of ( 4 . ~ )  with (2.15), which i s  the essential. idea in the alge- 

braic tbeory of linear systems, was done explicitly first in WMAN [1965b]. 

We shall direct our remarks here nainly t o  the history of conditions 

(2.8; and (2.15) - as related t o  controllabilitx. See also earlier 

comments in KlllMAN [1960c, pp. 481, 4-83, 4841 and in W A N ,  HO, and 

IURENDRA [1963, pp. 210-2123. We will have t o  .bear in mind that the 

development of modern- control theory camot be separated 'from the develop- 

ment of the concept of controllability; mreover, f&e technological 

problemsof the 1950ts and even earlier had a ajar influence on the 

genesis of mathematical idzas (just as the l a t t e r  have led t o  many 

new technological applications of control i n  the 19601s). 
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The writer developed the mathematical definition of controllability 

with applications to control thecq-, during the first part of 1959. 

(~n~ublished course notes at Johns Hopkhs UnLversi tg; 1958/59. ) These 

first definitic s were in the form of (2.17) and (2.3). F o r d  presenta- 

tions of the results were made in Mexico City (~e~tesber, 1959, see 

KALMAN [lg6Ob]), University of California at Berkeley (~~ril, 1969, see 

[lg@d]), and Moskva (June, 196% see [19ac]), and in 

scientific lectures on many other concurrent occasions in the U.S. As 

'far as the writer is aware, a conscious and explicit definition of 

controllability which combines a control-theoretic wording with a 

prscise mathematical criterion was first given in the above references. 

There are of course many instances of similar ideas arisirg in related 

corrtexts. Perhaps the comments below can be used as the starting point 

of a more detailed examination of the situation in a seminar in the 

tiistory of ideas. 

The following is the chain of the writerls own ideas culminating 

in the publications mentioned above: 

(1) In KALMAN [ 19541 it is pointed out (using transform methods) 

tbit continuous-time linear systems can be controlled by a linear 

discrete-time (sampled-data) controller in finite time.* 
--------------- 

*It is sometimes claimd in the nathematical Etcrature of optimal 
control theory that this cannot be done with a linear system. This is false; - 
the correct statement is "cannot be done with a linear controller producing 
control functions which are continuous (and not merely piecewise continuousl) 
in time." Such a restriction ia~completely'irrelevant from the technological 
point of view. As a matter of fact, computer-controlled systens have been 
proposed a d  built for many years on the basis of linear, time-optimal control. 
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(2) Transposing the result. of W I A N  [ 1954 I f'rop transfer functions 

to state variables, an algorithm was sketched'for the solution of the 

discrete-time time-optimal control of systems with bounded control and 

linear continuous-time dpmics. [ KALMAN, 1957 1 

(3) As a popularization of the results of the preceding work, the 

same technique was applied to give a general method for the design of 

linear sampled-data systems 3y KALMAN and BERTRAM [1958 1. 

Some background comments concerning these papers are appropriate: 

(1) The ideas am3 method presented in KALMAN [1954] descend 

directly fram ezrlier (and very well known) engineering research on 

tke-optimal control. (The main references in KiUHAN [1954] are: 

V~~ [ 19501, HOYMN [ 19511, BOGNER and KAZDA [1954], as well as a 

research report included in ~ ' 4 i V i  [I9551 .) Although the results of . 

KALMAN [1954] on linear time-optimal control were considered to be new 

when published, it became clear later that simiiar ideas were at least 

implicit iri 0I;DENBOURG and SARTORIUS 11951, $90, p. 2.91 and in TSYPKINt s 

work in the early 19501s. The engineering idea, of nonlinear time-optimal 

control goes back, at least, to DOLL [ 19431 and to OLDENBURGER in lgbl, 

although the latterts vork was unfortunately not widely known before 1957. 

During the same time, there was much interest in the sameproblems in 

other countries; see, for ins%ance, FEIl)BP;UM [1953 1 and UTTLEY and HAMMOND 

[1953]. Mathematical work in these problems probably began with 'BUSHAWIS 

dissertation [1952] in which, to quote from KAIyA&Y [1955, before equation 

(40) 1, I t  . . . :. [ it was ] rigorously proved that the intuition which led to 
the formulation of the [engineering] theory [quoted above] was indeed 

correct .I1 TSLENt s survey [1954 1 contains a lengthy account of this state 



of affairs mi was ready by many. -- W.e emphasize*: none of this 

extensive literature contains even a hint of the algebraic considerations 

related to controllability. 

(2-3) !Che critical insight gained and recorded in I C A U U  119571 is 

the following: the solution of the discrete-time time-optimal control 

problem is equivalent to expressing the state as a linear combination 

of a certain vector se¶uence (related to control and dynamics) w i t h  

coefficients bounded by 1 in absolute value, the coefficients being 

the values of the optimaf control sequence. !l!he linear independence 

ofthe first n vectors of the sequence guarantees that every point 

in i neighborhood of zero cul be moved to the origin in at no& n 

steps (hence the terminology of "camplete controllability"); and the 

condition for this is identica w i t h  (2.17) (stated in KkLMiUl [1957] 

and KAWAN and BERTRAM 119581 only for the case det F # 0 and m = 1). 

A thorough discussion of these matters is found in KALMAN 11960~; see 

especially Theorem I, p. 485 1. A scrims ccmegtual error in ISAlNd 

[19571 occurred, however, in that complete controllability was not 

assumed, as a hypothesis for the existence of time-opt- control law, 

but an attempt was made to show that the controllability is almost 

always colliplete [ ~ e m a a  11. In fact, this lemma is true, with a small - 
technicel modification in the condition. Only much later did it become 

cleq (see the discussion of Theorem D in the ~ntroduction), however, 

that a .dynamical' system is always completely : controllable (in the nonconstsnt 

case,. completely, rezch&Z,le) if it is derived from an external descrip+' don. It was 

this difficulty, very mysterious in 1957, which led to the development 
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of a formalma@ine?y for the definition of controllability during the 

next two years. The changing point of view is already apparent in 

KADW and BEqTRAM [19581; the unpublished paper promised there was 

delayed precisely because the algebraic machinery to prove Theorem D 

wss out of reach in 1957-8. Consult also the findings of the biblio- 

grapher RUDOLF [ 19691 . 

IN SWIARY: under the stimulation of the engineering problems 

of minimal-time optimal control, the researches begun by 'XAfiMAN [1954, 

1957 1 and KAIJl4N and BERTRAM [ 19581 eventually evolved intoi uhat has 

came to. be czlled the mathematical theory of controllabilitx (of linear 

systems). 

Beginning about 1955, ~ u d  sthulated by the same engineerir-8 

problems, PONTRYAGIN.and his school in the USSR developed their 

mathematical theory of optimal control around the celebrated "mupi 

Principle".  hey were well aware of the survey of TSIEN [1954] 

mentioned . above, and referenced it both in Ehglish and in the Russian 

translation of 1956.) We now how that a _ ~ y  theory of control, regard- 

less of its particular mathenatical style, must contain ingredients 

related to controllability. So it is interesting to examine how 

explicitly the controllability condition appears in the work of WNTRYAGIN 

and related research.' 

GAMKRELIDZE 11957, $2; 1958 61, $21 calls the time optimal control 

problem associzted with the system 



"nonrlegenerate" i f f  b i s  not contained i n  a proper' A-invariant 

n 
subspace of R . He notes inrmediatelythat t h i s  i s  equivalent t o  

(11.2) det (b, Ab, ..., A%) # 0 

(i.e., the special case of (2.8) for m = 1).  IIe then proves: & 

the "degenerate" case the problem either reduces t o  a sjmpler one or 

the motion c a n n ~ t  be influenced by the control f'unction u(*). A l l  

t h i s  is  very close t o  an explicit  definition of controllability. 

However, i n  discussing the general case m > 1, m Z E  [ 19.58, 

53, Section 11 defines "nondegeneracy" of the system 

as the condition 

(ll.4) det (bi, Abi, . . ., A~-%. )  # 0 for  every column b. E B, 
1 1 

but he does not show tha t  t h i s  generaiized condition of "nondegeneracy" for (11.3) 

inherits the interesting characterization sroved for  "nondegeneracy" 

i n  the case of (11.1). I n  fact, condition (ll.4) is much too strong 

t o  prove this ;  the correct condition i s  (2.8), tha t  is, complete 

controllability. In  other words, in G P m I D Z E  s work (ll.4) plays 

the role  of a technical condition fez1 elimina+;9ng "degeneracy" ( a tua l ly ,  

lack of uniqueness) from a pazticular optimal control problem and i s  

not,explicitly related t o  the more basic notion of complete controllability. 

Neither GAMKRELIDZE nor PONTRYAGIN [1958] give an interpretation o l  

(11.4) a s  a property of tile Qilsslical system (11.3), but employ (11.4) 

only i n  relation t o  the particular problem of time-optimal control. See 
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dso [lg60c, p. 484 I. A siular point of view is taken by 

USALLE (19601; he calls a dynamical system (31.3) satisoing (2.8) 

''proper. but then goes on to requira (~1.4) (to rssure the uniqueness 

of the time-optimal controls) and calls such systems vnom%ln. 

The assungtion of some kind of "nondegeneracyl' conditioa was 

appazently unavoidable in the early phases of research on the time- 

optimal control qroblem. For example, ROSE [1953, pg. 39-58] examines 

this problem for (u.1) ; by defidng "nondegeneracy" [p .  411 by a 

condition equiw.lelit ot (ll.2), he obtains most of MMKRELDZE~s results 

in the special case when A has real eigenvalues [meorem 121. ROSE 

uses determinants closely related to the now familiar lemmas in cantrol- 

lability theory but he, too, fails to formulate controllability as a 

conce2t independent of the time-optimal control pr031em~ 

A similar situation exists in the calculus of kiations. The 

so-called Caratheodory classes (af'ter CARATHEODORY [1933 1) correspond 

to a kind of classification of controllability properties of nonconstant 

systems. In fact, the standard notion of a normi family of extremals 

of the calculus of varta5ions is closely related to condition (ll.4), 

suitably generalized via (2.5) to nonconstant sy s terns .* Normality is 
.. 

used in the calculus of variations mainly as alhondegeneracJftcondition. 

It is iaports.n",o note that the lrnondegeneracyll conditions 

employed in optim.1. coritro~ and the calculus 01 varlazlons play mainly the 

role of eliminating annoyim- technicalities and simplifjring proofs. 

--------------- 
*The use of the word llnorma,lll by IaSALLE [1960j o r  (-11.4) is only 

accidentally coincident with the earlier use of the "normalw in the 
calculus of variations. 



With suitable formulation, however, the basic ?esults of time-optimal 

control theory continue to hold without the assumption of complete 

controllability. The same is not tme, however, of the four kinds of 

theorems mentioned in the Intorduction, and therefore these results 

are more relevant to the story of controllability than the time-opt-1 

control discussed above. 

There is a considerable body of literature relevant to controllability 

theory which is quite independent of control theory. For instance, the 

treatment of a reachability condition in partial differential equations 

goes back at least to CHOW [ 19401 but perhaps it is fairer to atkribute 

it to Caratheodoryts weil-known approach to entropy via the nonintegra- 

bility condition. The current status of these ideas as related to 

controllability is reviewed by WEBS [1969, Section 91. An independent 

and very explic5t study of reachability is due to ROXLN [1960]; unfor- 

tunat ely, his examples were purely geometric and therefore the paper 

did. ~ o t  help in clarifying the celebrated condition (2.8). The 

Wronskian determinant of the classical theory of ordinary differential 

equations with variable coefficients also has intersections with control- 

lability theory, as pointed out recently with considerable success by 

SILVERMAN [19661. Vany problems in control theory were misunderstood 

or even incorrectly solved before the adve1l.L of controllability theory. 

Some of these are menttoned in KALMAN [1963b, Section 91. For relations 

with automata theory, see m I B  [1965 1. 

Let us conclude by stating the writer's own current-,position as 

to the significance of controllability as s subject in mathematics: 
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(1) Controllability is basically an algebraic concept. ( ~ s  

c ~ h  applies of course also to the nonlinear controllability results 

obtained via the PfafYim method.) 

(2) The historical development of controllability was heavily 

influenced by the interest prevailing in the 1950,s in optimal control 

theory. Ultimately, however, controllability is seen as a relative* 

minor component of that theory. 

(3) Controllability as a t~nceptual tool is indispensable in 

the discussion of the relationship between transfer functions and 

differential equations and in questiohs relating to tae .four theorems 

of the Introduction, 

(4) The chief current problem in controllability theory is the 

ekension to more elaborate algebraic structures. 

For a survey of the historical background of observability, 

which would Lake us too far afieldhere, the reader should consult 
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